Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael J. Guertin is active.

Publication


Featured researches published by Michael J. Guertin.


PLOS Genetics | 2010

Chromatin Landscape Dictates HSF Binding to Target DNA Elements

Michael J. Guertin; John T. Lis

Sequence-specific transcription factors (TFs) are critical for specifying patterns and levels of gene expression, but target DNA elements are not sufficient to specify TF binding in vivo. In eukaryotes, the binding of a TF is in competition with a constellation of other proteins, including histones, which package DNA into nucleosomes. We used the ChIP-seq assay to examine the genome-wide distribution of Drosophila Heat Shock Factor (HSF), a TF whose binding activity is mediated by heat shock-induced trimerization. HSF binds to 464 sites after heat shock, the vast majority of which contain HSF Sequence-binding Elements (HSEs). HSF-bound sequence motifs represent only a small fraction of the total HSEs present in the genome. ModENCODE ChIP-chip datasets, generated during non-heat shock conditions, were used to show that inducibly bound HSE motifs are associated with histone acetylation, H3K4 trimethylation, RNA Polymerase II, and coactivators, compared to HSE motifs that remain HSF-free. Furthermore, directly changing the chromatin landscape, from an inactive to an active state, permits inducible HSF binding. There is a strong correlation of bound HSEs to active chromatin marks present prior to induced HSF binding, indicating that an HSEs residence in “active” chromatin is a primary determinant of whether HSF can bind following heat shock.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Peptidylarginine deiminase 2-catalyzed histone H3 arginine 26 citrullination facilitates estrogen receptor α target gene activation

Xuesen Zhang; Michael J. Bolt; Michael J. Guertin; Wei Chen; Sheng Zhang; Brian D. Cherrington; Daniel J. Slade; Christina J. Dreyton; Venkataraman Subramanian; Kevin L. Bicker; Paul R. Thompson; Michael A. Mancini; John T. Lis

Cofactors for estrogen receptor α (ERα) can modulate gene activity by posttranslationally modifying histone tails at target promoters. Here, we found that stimulation of ERα-positive cells with 17β-estradiol (E2) promotes global citrullination of histone H3 arginine 26 (H3R26) on chromatin. Additionally, we found that the H3 citrulline 26 (H3Cit26) modification colocalizes with ERα at decondensed chromatin loci surrounding the estrogen-response elements of target promoters. Surprisingly, we also found that citrullination of H3R26 is catalyzed by peptidylarginine deiminase (PAD) 2 and not by PAD4 (which citrullinates H4R3). Further, we showed that PAD2 interacts with ERα after E2 stimulation and that inhibition of either PAD2 or ERα strongly suppresses E2-induced H3R26 citrullination and ERα recruitment at target gene promoters. Collectively, our data suggest that E2 stimulation induces the recruitment of PAD2 to target promoters by ERα, whereby PAD2 then citrullinates H3R26, which leads to local chromatin decondensation and transcriptional activation.


Molecular Cell | 2014

DNase footprint signatures are dictated by factor dynamics and DNA sequence.

Myong-Hee Sung; Michael J. Guertin; Songjoon Baek; Gordon L. Hager

Genomic footprinting has emerged as an unbiased discovery method for transcription factor (TF) occupancy at cognate DNA in vivo. A basic premise of footprinting is that sequence-specific TF-DNA interactions are associated with localized resistance to nucleases, leaving observable signatures of cleavage within accessible chromatin. This phenomenon is interpreted to imply protection of the critical nucleotides by the stably bound protein factor. However, this model conflicts with previous reports of many TFs exchanging with specific binding sites in living cells on a timescale of seconds. We show that TFs with short DNA residence times have no footprints at bound motif elements. Moreover, the nuclease cleavage profile within a footprint originates from the DNA sequence in the factor-binding site, rather than from the protein occupying specific nucleotides. These findings suggest a revised understanding of TF footprinting and reveal limitations in comprehensive reconstruction of the TF regulatory network using this approach.


Current Opinion in Genetics & Development | 2013

Mechanisms by which transcription factors gain access to target sequence elements in chromatin

Michael J. Guertin; John T. Lis

Transcription factors (TF) bind DNA sequence motifs, but the presence of a consensus DNA element is not sufficient to direct TF binding to chromatin. Recent genomic data have revealed that accessibility, as measured by DNase sensitivity and the presence of active histone marks, is necessary for TF binding. DNA sequence provides the initial specification of the accessibility of DNA elements within chromatin that permits TF binding. In yeast, it is known that poly(dA-dT) tracts directly encode low-nucleosome occupancy at promoters. Recent evidence suggests that CpG islands in mammals are inherently refractory to higher-order chromatin structure and remain accessible, despite favoring nucleosome formation in vitro. Taken together, these studies support a model for how accessibility originates and then propagates throughout regulatory cascades and development.


Cold Spring Harbor Symposia on Quantitative Biology | 2010

Drosophila Heat Shock System as a General Model to Investigate Transcriptional Regulation

Michael J. Guertin; Steven J. Petesch; Katie L. Zobeck; Irene M. Min; John T. Lis

Whereas the regulation of a gene is uniquely tailored to respond to specific biological needs, general transcriptional mechanisms are used by diversely regulated genes within and across species. The primary mode of regulation is achieved by modulating specific steps in the transcription cycle of RNA polymerase II (Pol II). Pol II pausing has recently been identified as a prevalent rate-limiting and regulated step in the transcription cycle. Many sequence-specific transcription factors (TFs) modulate the duration of the pause by directly or indirectly recruiting positive transcription elongation factor b (P-TEFb) kinase, which promotes escape of Pol II from the pause into productive elongation. These specialized TFs find their target-binding sites by discriminating between DNA sequence elements based on the chromatin context in which these elements reside and can result in productive changes in gene expression or nonfunctional promiscuous binding. The binding of a TF can precipitate drastic changes in chromatin architecture that can be both dependent and independent of active Pol II transcription. Here, we highlight heat-shock-mediated gene transcription as a model system in which to study common mechanistic features of gene regulation.


PLOS Genetics | 2012

Accurate Prediction of Inducible Transcription Factor Binding Intensities In Vivo

Michael J. Guertin; André L. Martins; Adam Siepel; John T. Lis

DNA sequence and local chromatin landscape act jointly to determine transcription factor (TF) binding intensity profiles. To disentangle these influences, we developed an experimental approach, called protein/DNA binding followed by high-throughput sequencing (PB–seq), that allows the binding energy landscape to be characterized genome-wide in the absence of chromatin. We applied our methods to the Drosophila Heat Shock Factor (HSF), which inducibly binds a target DNA sequence element (HSE) following heat shock stress. PB–seq involves incubating sheared naked genomic DNA with recombinant HSF, partitioning the HSF–bound and HSF–free DNA, and then detecting HSF–bound DNA by high-throughput sequencing. We compared PB–seq binding profiles with ones observed in vivo by ChIP–seq and developed statistical models to predict the observed departures from idealized binding patterns based on covariates describing the local chromatin environment. We found that DNase I hypersensitivity and tetra-acetylation of H4 were the most influential covariates in predicting changes in HSF binding affinity. We also investigated the extent to which DNA accessibility, as measured by digital DNase I footprinting data, could be predicted from MNase–seq data and the ChIP–chip profiles for many histone modifications and TFs, and found GAGA element associated factor (GAF), tetra-acetylation of H4, and H4K16 acetylation to be the most predictive covariates. Lastly, we generated an unbiased model of HSF binding sequences, which revealed distinct biophysical properties of the HSF/HSE interaction and a previously unrecognized substructure within the HSE. These findings provide new insights into the interplay between the genomic sequence and the chromatin landscape in determining transcription factor binding intensity.


PLOS Genetics | 2015

GAGA Factor Maintains Nucleosome-Free Regions and Has a Role in RNA Polymerase II Recruitment to Promoters

Nicholas J. Fuda; Michael J. Guertin; Sumeet Sharma; Charles G. Danko; André L. Martins; Adam Siepel; John T. Lis

Previous studies have shown that GAGA Factor (GAF) is enriched on promoters with paused RNA Polymerase II (Pol II), but its genome-wide function and mechanism of action remain largely uncharacterized. We assayed the levels of transcriptionally-engaged polymerase using global run-on sequencing (GRO-seq) in control and GAF-RNAi Drosophila S2 cells and found promoter-proximal polymerase was significantly reduced on a large subset of paused promoters where GAF occupancy was reduced by knock down. These promoters show a dramatic increase in nucleosome occupancy upon GAF depletion. These results, in conjunction with previous studies showing that GAF directly interacts with nucleosome remodelers, strongly support a model where GAF directs nucleosome displacement at the promoter and thereby allows the entry Pol II to the promoter and pause sites. This action of GAF on nucleosomes is at least partially independent of paused Pol II because intergenic GAF binding sites with little or no Pol II also show GAF-dependent nucleosome displacement. In addition, the insulator factor BEAF, the BEAF-interacting protein Chriz, and the transcription factor M1BP are strikingly enriched on those GAF-associated genes where pausing is unaffected by knock down, suggesting insulators or the alternative promoter-associated factor M1BP protect a subset of GAF-bound paused genes from GAF knock-down effects. Thus, GAF binding at promoters can lead to the local displacement of nucleosomes, but this activity can be restricted or compensated for when insulator protein or M1BP complexes also reside at GAF bound promoters.


Genes & Development | 2016

Transcription factors GAF and HSF act at distinct regulatory steps to modulate stress-induced gene activation

Fabiana M. Duarte; Nicholas J. Fuda; Dig Bijay Mahat; Leighton J. Core; Michael J. Guertin; John T. Lis

The coordinated regulation of gene expression at the transcriptional level is fundamental to development and homeostasis. Inducible systems are invaluable when studying transcription because the regulatory process can be triggered instantaneously, allowing the tracking of ordered mechanistic events. Here, we use precision run-on sequencing (PRO-seq) to examine the genome-wide heat shock (HS) response in Drosophila and the function of two key transcription factors on the immediate transcription activation or repression of all genes regulated by HS. We identify the primary HS response genes and the rate-limiting steps in the transcription cycle that GAGA-associated factor (GAF) and HS factor (HSF) regulate. We demonstrate that GAF acts upstream of promoter-proximally paused RNA polymerase II (Pol II) formation (likely at the step of chromatin opening) and that GAF-facilitated Pol II pausing is critical for HS activation. In contrast, HSF is dispensable for establishing or maintaining Pol II pausing but is critical for the release of paused Pol II into the gene body at a subset of highly activated genes. Additionally, HSF has no detectable role in the rapid HS repression of thousands of genes.


Molecular Endocrinology | 2014

Transient estrogen receptor binding and p300 redistribution support a squelching mechanism for estradiol-repressed genes.

Michael J. Guertin; Xuesen Zhang; Gordon L. Hager

Proper gene regulation is essential for proper organismal development and appropriate responses to external stimuli. Specialized factors, termed master regulators, are often responsible for orchestrating the molecular events that result from signaling cascades. Master regulators coordinate the activation and repression of specific gene classes. Estrogen receptor α (ER) precipitates the signaling cascade that results from endogenous or exogenous estrogen hormones. ER is a classic transcriptional activator and the mechanisms by which ER coordinates gene activation are well characterized. However, it remains unclear how ER coordinates the immediate repression of genes. We integrated genomic transcription, chromosome looping, transcription factor binding, and chromatin structure data to analyze the molecular cascade that results from estradiol (E2)-induced signaling in human MCF-7 breast cancer cells and addressed the context-specific nature of gene regulation. We defined a class of genes that are immediately repressed upon estrogen stimulation, and we compared and contrasted the molecular characteristics of these repressed genes vs activated and unregulated genes. The most striking and unique feature of the repressed gene class is transient binding of ER at early time points after estrogen stimulation. We also found that p300, a coactivator and acetyltransferase, quantitatively redistributes from non-ER enhancers to ER enhancers after E2 treatment. These data support an extension of the classic physiological squelching model, whereby ER hijacks coactivators from repressed genes and redistributes the coactivators to ER enhancers that activate transcription.


PLOS Genetics | 2014

Targeted H3R26 Deimination Specifically Facilitates Estrogen Receptor Binding by Modifying Nucleosome Structure

Michael J. Guertin; Xuesen Zhang; Lynne J. Anguish; Sohyoung Kim; Lyuba Varticovski; John T. Lis; Gordon L. Hager; Scott A. Coonrod

Transcription factor binding to DNA in vivo causes the recruitment of chromatin modifiers that can cause changes in chromatin structure, including the modification of histone tails. We previously showed that estrogen receptor (ER) target gene activation is facilitated by peptidylarginine deiminase 2 (PAD2)-catalyzed histone H3R26 deimination (H3R26Cit). Here we report that the genomic distributions of ER and H3R26Cit in breast cancer cells are strikingly coincident, linearly correlated, and observed as early as 2 minutes following estradiol treatment. The H3R26Cit profile is unlike that of previously described histone modifications and is characterized by sharp, narrow peaks. Paired-end MNase ChIP-seq indicates that the charge-neutral H3R26Cit modification facilitates ER binding to DNA by altering the fine structure of the nucleosome. Clinically, we find that PAD2 and H3R26Cit levels correlate with ER expression in breast tumors and that high PAD2 expression is associated with increased survival in ER+ breast cancer patients. These findings provide insight into how transcription factors gain access to nucleosomal DNA and implicate PAD2 as a novel therapeutic target for ER+ breast cancer.

Collaboration


Dive into the Michael J. Guertin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gordon L. Hager

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Songjoon Baek

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Y. Liu

University of Virginia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam Siepel

Cold Spring Harbor Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge