Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael J. Holland is active.

Publication


Featured researches published by Michael J. Holland.


Journal of Biological Chemistry | 2002

Transcript abundance in yeast varies over six orders of magnitude.

Michael J. Holland

In the current era of functional genomics, it is remarkable that the intracellular range of transcript abundance is largely unknown. For the yeast Saccharomyces cerevisiae, hybridization-based complexity analysis and SAGE analysis showed that the majority of yeast mRNAs are present at one or fewer copies per cell; however, neither method provides an accurate estimate of the full range of low abundance transcripts. Here we examine the range of intracellular transcript abundance in yeast using kinetically monitored, reverse transcriptase-initiated PCR (kRT-PCR). Steady-state transcript levels encoded by all 65 genes on the left arm of chromosome III and 185 transcription factor genes are quantitated. Abundant transcripts encoded by glycolytic genes, previously quantitated by kRT-PCR, are present at a few hundred copies per cell whereas genes encoding physiologically important transcription factors are expressed at levels as low as one-thousandth transcript per cell. Of the genes assessed, only the silent mating type loci,HML and HMR, are transcriptionally silent. The results show that transcript abundance in yeast varies over six orders of magnitude. Finally, kRT-PCR, cDNA microarray, and high density oligonucleotide array assays are compared for their ability to detect and quantitate the complete yeast transcriptome.


Journal of Biological Chemistry | 2005

Interaction between transcription elongation factors and mRNA 3'-end formation at the Saccharomyces cerevisiae GAL10-GAL7 locus.

Craig D. Kaplan; Michael J. Holland; Fred Winston

Spt6 is a conserved transcription factor that associates with RNA polymerase II (pol II) during elongation. Spt6 is essential for viability in Saccharomyces cerevisiae and regulates chromatin structure during pol II transcription. Here we present evidence that mutations that impair Spt6, a second elongation factor, Spt4, and pol II can affect 3′-end formation at GAL10. Additional analysis suggests that Spt6 is required for cotranscriptional association of the factor Ctr9, a member of the Paf1 complex, with GAL10 and GAL7, and that Ctr9 association with chromatin 3′ of GAL10 is regulated by the GAL10 polyadenylation signal. Overall, these results provide new evidence for a connection between the transcription elongation factor Spt6 and 3′-end formation in vivo.


Molecular and Cellular Biology | 1990

Multiple factors bind the upstream activation sites of the yeast enolase genes ENO1 and ENO2: ABFI protein, like repressor activator protein RAP1, binds cis-acting sequences which modulate repression or activation of transcription.

P K Brindle; J P Holland; C E Willett; Michael A. Innis; Michael J. Holland

Binding sites for three distinct proteins were mapped within the upstream activation sites (UAS) of the yeast enolase genes ENO1 and ENO2. Sequences that overlapped the UAS1 elements of both enolase genes bound a protein which was identified as the product of the RAP1 regulatory gene. Sequences within the UAS2 element of the ENO2 gene bound a second protein which corresponded to the ABFI (autonomously replicating sequence-binding factor) protein. A protein designated EBF1 (enolase-binding factor) bound to sequences which overlapped the UAS2 element in ENO1. There was a good correlation among all of the factor-binding sites and the location of sequences required for UAS activity identified by deletion mapping analysis. This observation suggested that the three factors play a role in transcriptional activation of the enolase genes. UAS elements which bound the RAP1 protein or the ABFI protein modulated glucose-dependent induction of ENO1 and ENO2 expression. The ABFI-binding site in ENO2 overlapped sequences required for UAS2 activity in wild-type strains and for repression of ENO2 expression in strains carrying a null mutation in the positive regulatory gene GCR1. These latter results showed that the ABFI protein, like the RAP1 protein, bound sequences required for positive as well as negative regulation of gene expression. These observations strongly suggest that the biological functions of the RAP1 and ABFI proteins are similar.


Molecular and Cellular Biology | 1987

The GCR1 gene encodes a positive transcriptional regulator of the enolase and glyceraldehyde-3-phosphate dehydrogenase gene families in Saccharomyces cerevisiae.

Michael J. Holland; T Yokoi; J P Holland; K Myambo; Michael A. Innis

The intracellular concentrations of the polypeptides encoded by the two enolase (ENO1 and ENO2) and three glyceraldehyde-3-phosphate dehydrogenase (TDH1, TDH2, and TDH3) genes were coordinately reduced more than 20-fold in a Saccharomyces cerevisiae strain carrying the gcr1-1 mutation. The steady-state concentration of glyceraldehyde-3-phosphate dehydrogenase mRNA was shown to be approximately 50-fold reduced in the mutant strain. Overexpression of enolase and glyceraldehyde-3-phosphate dehydrogenase in strains carrying multiple copies of either ENO1 or TDH3 was reduced more than 50-fold in strains carrying the gcr1-1 mutation. These results demonstrated that the GCR1 gene encodes a trans-acting factor which is required for efficient and coordinate expression of these glycolytic gene families. The GCR1 gene and the gcr1-1 mutant allele were cloned and sequenced. GCR1 encodes a predicted 844-amino-acid polypeptide; the gcr1-1 allele contains a 1-base-pair insertion mutation at codon 304. A null mutant carrying a deletion of 90% of the GCR1 coding sequence and a URA3 gene insertion was constructed by gene replacement. The phenotype of a strain carrying this null mutation was identical to that of the gcr1-1 mutant strain.


Molecular and Cellular Biology | 1995

The GCR1 requirement for yeast glycolytic gene expression is suppressed by dominant mutations in the SGC1 gene, which encodes a novel basic-helix-loop-helix protein.

Kayoko Nishi; Chang Seo Park; Alan E. Pepper; Greg Eichinger; Michael A. Innis; Michael J. Holland

The GCR1 gene product is required for maximal transcription of yeast glycolytic genes and for growth of yeast strains in media containing glucose as a carbon source. Dominant mutations in two genes, SGC1 and SGC2, as well as recessive mutations in the SGC5 gene were identified as suppressors of the growth and transcriptional defects caused by a gcr1 null mutation. The wild-type and mutant alleles of SGC1 were cloned and sequenced. The predicted amino acid sequence of the SGC1 gene product includes a region with substantial similarity to the basic-helix-loop-helix domain of the Myc family of DNA-binding proteins. The SGC1-1 dominant mutant allele contained a substitution of glutamine for a highly conserved glutamic acid residue within the putative basic DNA binding domain. A second dominant mutant, SGC1-2, contained a valine-for-isoleucine substitution within the putative loop region. The SGC1-1 dominant mutant suppressed the GCR1 requirement for enolase, glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, phosphoglycerate mutase, and pyruvate kinase gene expression. Expression of the yeast enolase genes was reduced three- to fivefold in strains carrying an sgc1 null mutation, demonstrating that SGC1 is required for maximal enolase gene expression. Expression of the enolase genes in strains carrying gcr1 and sgc1 double null mutations was substantially less than observed for strains carrying either null mutation alone, suggesting that GCR1 and SGC1 function on parallel pathways to activate yeast glycolytic gene expression.


Molecular and Cellular Biology | 1993

A complex regulatory element from the yeast gene ENO2 modulates GCR1-dependent transcriptional activation.

C E Willett; C M Gelfman; Michael J. Holland

The GCR1 gene product is required for maximal transcription of many yeast genes including genes encoding glycolytic enzymes. Transcription of the yeast enolase gene ENO2 is reduced 50-fold in strains carrying a gcr1 null mutation. cis-acting sequences that are sufficient for GCR1-dependent regulation of ENO2 expression were identified by using an enhancerless CYC1 promoter which is not normally dependent on GCR1 for expression. A 60-bp ENO2 sequence that was sufficient to provide high-level, GCR1-dependent transcriptional activation of the CYC1 promoter was identified. This 60-bp element could be subdivided into a 30-bp sequence containing a novel RAP1-binding site and a GCR1-binding site which did not activate CYC1 transcription and a 30-bp sequence containing a novel enhancer element that conferred moderate levels of GCR1-independent transcriptional activation. The 60-bp CGCR1-dependent upstream activator sequence is located immediately downstream from previously mapped overlapping binding sites for the regulatory proteins ABFI and RAP1. Evidence is presented that the overlapping ABFI- and RAP1-binding sites function together with sequences that bind GCR1 and RAP1 to stage transcriptional activation of ENO2 expression.


Journal of Biological Chemistry | 1995

Binding sites for abundant nuclear factors modulate RNA polymerase I-dependent enhancer function in Saccharomyces cerevisiae.

John J. Kang; Teresa J. Yokoi; Michael J. Holland

The 190-base pair (bp) rDNA enhancer within the intergenic spacer sequences of Saccharomyces cerevisiae rRNA cistrons activates synthesis of the S-rRNA precursor about 20-fold in vivo (Mestel, R., Yip, M., Holland, J. P., Wang, E., Kang, J., and Holland, M. J.(1989) Mol. Cell. Biol. 9, 1243-1254). We now report identification and analysis of transcriptional activities mediated by three cis-acting sites within a 90-bp portion of the rDNA enhancer designated the modulator region. In vivo, these sequences mediated termination of transcription by RNA polymerase I and potentiated the activity of the rDNA enhancer element. Two trans-acting factors, REB1 and REB2, bind independently to sites within the modulator region (Morrow, B. E., Johnson, S. P., and Warner, J. R. (1989) J. Biol. Chem. 264, 9061-9068). We show that REB2 is identical to the ABF1 protein. Site-directed mutagenesis of REB1 and ABF1 binding sites demonstrated uncoupling of RNA polymerase I-dependent termination from transcriptional activation in vivo. We conclude that REB1 and ABF1 are required for RNA polymerase I-dependent termination and enhancer function, respectively. Since REB1 and ABF1 proteins also regulate expression of class II genes and other nuclear functions, our results suggest further similarities between RNA polymerase I and II regulatory mechanisms. Two rDNA enhancers flanking a rDNA minigene stimulated RNA polymerase I transcription in a “multiplicative” fashion. Deletion mapping analysis showed that similar cis-acting sequences were required for enhancer function when positioned upstream or downstream from a rDNA minigene.


Molecular and Cellular Biology | 2005

Mutations in the Nucleosome Core Enhance Transcriptional Silencing

Eugenia Y. Xu; Xin Bi; Michael J. Holland; Daniel E. Gottschling; James R. Broach

ABSTRACT Transcriptional silencing in Saccharomyces requires specific nucleosome modifications promoted in part by a complex of Sir proteins that binds to the modified nucleosomes. Recent evidence suggests that modifications of both the histone amino termini and the core domain of nucleosomes contribute to silencing. We previously identified histone H4 mutations affecting residues in the core of the nucleosome that yield enhanced silencing at telomeres. Here we show that enhanced silencing induced by these mutations increases the proportion of cells in which telomeres and silent mating-type loci are in the silent state. One H4 mutation affects the expression of a subset of genes whose expression is altered by deletion of HTZ1, which encodes the histone variant H2A.Z, suggesting that the mutation may antagonize H2A.Z incorporation into nucleosomes. A second mutation causes the spread of silencing into subtelomeric regions that are not normally silenced in wild-type cells. Mechanistically, this mutation does not significantly accelerate the formation of silent chromatin but, rather, reduces the rate of decay of the silenced state. We propose that these mutations use distinct mechanisms to affect the dynamic interplay between activation and repression at the boundary between active and silent chromatin.


Biochimica et Biophysica Acta | 1997

Effect of site-directed mutagenesis of His373 of yeast enolase on some of its physical and enzymatic properties

John M. Brewer; Claiborne V.C. Glover; Michael J. Holland; Lukasz Lebioda

The X-ray structure of yeast enolase shows His373 interacting with a water molecule also held by residues Glu168 and Glu211. The water molecule is suggested to participate in the catalytic mechanism (Lebioda, L. and Stec, B. (1991) Biochemistry 30, 2817-2822). Replacement of His373 with asparagine (H373N enolase) or phenylalanine (H373F enolase) reduces enzymatic activity to ca. 10% and 0.0003% of the native enzyme activity, respectively. H373N enolase exhibits a reduced Km for the substrate, 2-phosphoglycerate, and produces the same absorbance changes in the chromophoric substrate analogues TSP1 and AEP1, relative to native enolase. H373F enolase binds AEP less strongly, producing a smaller absorbance change than native enolase, and reacts very little with TSP. H373F enolase dissociates to monomers in the absence of substrate; H373N enolase subunit dissociation is less than H373F enolase but more than native enolase. Substrate and Mg2+ increase subunit association in both mutants. Differential scanning calorimetric experiments indicate that the interaction with substrate that stabilizes enolase to thermal denaturation involves His373. We suggest that the function of His373 in the enolase reaction may involve hydrogen bonding rather than acid/base catalysis, through interaction with the Glu168/Glu211/H2O system, which produces removal or addition of hydroxyl at carbon-3 of the substrate.


Journal of Protein Chemistry | 2003

Enzymatic function of loop movement in enolase: Preparation and some properties of H159N, H159A, H159F, and N207A enolases

John M. Brewer; Claiborne V.C. Glover; Michael J. Holland; Lukasz Lebioda

The hypothesis that His159 in yeast enolase moves on a polypeptide loop to protonate the phosphoryl of 2-phosphoglycerate to initiate its conversion to phosphoenolpyruvate was tested by preparing H159N, H159A, and H159F enolases. These have 0.07%–0.25% of the native activity under standard assay conditions and the pH dependence of maximum velocities of H159A and H159N mutants is markedly altered. Activation by Mg2+ is biphasic, with the smaller Mg2+ activation constant closer to that of the “catalytic” Mg2+ binding site of native enolase and the larger in the mM range in which native enolase is inhibited. A third Mg2+ may bind to the phosphoryl, functionally replacing proton donation by His159. N207A enolase lacks an intersubunit interaction that stabilizes the closed loop(s) conformation when 2-phosphoglycerate binds. It has 21% of the native activity, also exhibits biphasic Mg2+ activation, and its reaction with the aldehyde analogue of the substrate is more strongly inhibited than is its normal enzymatic reaction. Polypeptide loop(s) closure may keep a proton from His159 interacting with the substrate phosphoryl oxygen long enough to stabilize a carbanion intermediate.

Collaboration


Dive into the Michael J. Holland's collaboration.

Top Co-Authors

Avatar

John J. Kang

University of California

View shared research outputs
Top Co-Authors

Avatar

J P Holland

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lukasz Lebioda

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

T Yokoi

University of California

View shared research outputs
Top Co-Authors

Avatar

C E Willett

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chang Seo Park

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge