Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael J. Minette is active.

Publication


Featured researches published by Michael J. Minette.


Archive | 2009

Pretreatment Engineering Platform Phase 1 Final Test Report

Dean E. Kurath; Brady D. Hanson; Michael J. Minette; David L. Baldwin; Brian M. Rapko; Lenna A. Mahoney; Philip P. Schonewill; Richard C. Daniel; Paul W. Eslinger; James L. Huckaby; Justin M. Billing; Parameshwaran S. Sundar; Gary B. Josephson; James J. Toth; Satoru T. Yokuda; Ellen Bk Baer; Steven M. Barnes; Elizabeth C. Golovich; Scot D. Rassat; Christopher F. Brown; John Gh Geeting; Gary J. Sevigny; Amanda J. Casella; Jagannadha R. Bontha; Rosanne L. Aaberg; Pamela M. Aker; Consuelo E. Guzman-Leong; Marcia L. Kimura; S. K. Sundaram; Richard P. Pires

Pacific Northwest National Laboratory (PNNL) was tasked by Bechtel National Inc. (BNI) on the River Protection Project, Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to conduct testing to demonstrate the performance of the WTP Pretreatment Facility (PTF) leaching and ultrafiltration processes at an engineering-scale. In addition to the demonstration, the testing was to address specific technical issues identified in Issue Response Plan for Implementation of External Flowsheet Review Team (EFRT) Recommendations - M12, Undemonstrated Leaching Processes.( ) Testing was conducted in a 1/4.5-scale mock-up of the PTF ultrafiltration system, the Pretreatment Engineering Platform (PEP). Parallel laboratory testing was conducted in various PNNL laboratories to allow direct comparison of process performance at an engineering-scale and a laboratory-scale. This report presents and discusses the results of those tests.


Archive | 2009

Deposition Velocities of Newtonian and Non-Newtonian Slurries in Pipelines

Adam P. Poloski; Harold E. Adkins; John Abrefah; Andrew M. Casella; Ryan E. Hohimer; Franz Nigl; Michael J. Minette; James J. Toth; Joel M. Tingey; Satoru T. Yokuda

The WTP pipe plugging issue, as stated by the External Flowsheet Review Team (EFRT) Executive Summary, is as follows: “Piping that transports slurries will plug unless it is properly designed to minimize this risk. This design approach has not been followed consistently, which will lead to frequent shutdowns due to line plugging.” A strategy was employed to perform critical-velocity tests on several physical simulants. Critical velocity is defined as the point where a stationary bed of particles deposits on the bottom of a straight horizontal pipe during slurry transport operations. Results from the critical velocity testing provide an indication of slurry stability as a function of fluid rheological properties and transport conditions. The experimental results are compared to the WTP design guide on slurry transport velocity in an effort to confirm minimum waste velocity and flushing velocity requirements as established by calculations and critical line velocity correlations in the design guide. The major findings of this testing is discussed below. Experimental results indicate that the use of the Oroskar and Turian (1980) correlation in the design guide is conservative—Slurry viscosity has a greater affect on particles with a large surface area to mass ratio. The increased viscous forces on these particles result in a decrease in predicted critical velocities from this traditional industry derived equations that focus on particles large than 100 m in size. Since the Hanford slurry particles generally have large surface area to mass ratios, the reliance on such equations in the Hall (2006) design guide is conservative. Additionally, the use of the 95% percentile particle size as an input to this equation is conservative. However, test results indicate that the use of an average particle density as an input to the equation is not conservative. Particle density has a large influence on the overall result returned by the correlation. Lastly, the viscosity correlation used in the WTP design guide has been shown to be inaccurate for Hanford waste feed materials. The use of the Thomas (1979) correlation in the design guide is not conservative—In cases where 100% of the particles are smaller than 74 m or particles are considered to be homogeneous due to yield stress forces suspending the particles the homogeneous fraction of the slurry can be set to 100%. In such cases, the predicted critical velocity based on the conservative Oroskar and Turian (1980) correlation is reduced to zero and the design guide returns a value from the Thomas (1979) correlation. The measured data in this report show that the Thomas (1979) correlation predictions often fall below that measured experimental values. A non-Newtonian deposition velocity design guide should be developed for the WTP— Since the WTP design guide is limited to Newtonian fluids and the WTP expects to process large quantities of such materials, the existing design guide should be modified address such systems. A central experimental finding of this testing is that the flow velocity required to reach turbulent flow increases with slurry rheological properties due to viscous forces dampening the formation of turbulent eddies. The flow becomes dominated by viscous forces rather than turbulent eddies. Since the turbulent eddies necessary for particle transport are not present, the particles will settle when crossing this boundary called the transitional deposition boundary. This deposition mechanism should be expected and designed for in the WTP.


Archive | 2009

EFRT M-12 Issue Resolution: Comparison of Filter Performance at PEP and CUF Scale

Richard C. Daniel; Justin M. Billing; Jagannadha R. Bontha; Christopher F. Brown; Paul W. Eslinger; Brady D. Hanson; James L. Huckaby; Naveen K. Karri; Marcia L. Kimura; Dean E. Kurath; Michael J. Minette

Pacific Northwest National Laboratory (PNNL) has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed, constructed, and operated as part of a plan to respond to issue M12, “Undemonstrated Leaching Processes” of the External Flowsheet Review Team (EFRT) issue response plan.(a) The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP replicates the WTP leaching processes using prototypic equipment and control strategies. The PEP also includes non-prototypic ancillary equipment to support the core processing.


Archive | 2005

Thermal Stability Studies of Candidate Decontamination Agents for Hanford’s Plutonium Finishing Plant Plutonium-Contaminated Gloveboxes

Randall D. Scheele; Thurman D. Cooper; Susan A. Jones; John R. Ewalt; James A. Compton; Donald S. Trent; Matthew K. Edwards; Anne E. Kozelisky; Paul A. Scott; Michael J. Minette

This report provides the results of PNNLs and Fluors studies of the thermal stabilities of potential wastes arising from decontamination of Hanfords Plutonium Finishing Plants plutonium contaminated gloveboxes. The candidate wastes arising from the decontamination technologies ceric nitrate/nitric acid, RadPro, Glygel, and Aspigel.


Archive | 2010

EFRT M-12 Issue Resolution: Comparison of PEP and Bench-Scale Oxidative Leaching Results

Brian M. Rapko; Christopher F. Brown; Paul W. Eslinger; Matthew S. Fountain; Tom S. Hausmann; James L. Huckaby; Brady D. Hanson; Dean E. Kurath; Michael J. Minette

Pacific Northwest National Laboratory (PNNL) has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed, constructed, and operated as part of a plan to respond to issue M12, “Undemonstrated Leaching Processes” of the External Flowsheet Review Team (EFRT) issue response plan.( ) The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP replicates the WTP leaching processes using prototypic equipment and control strategies. The PEP also includes non-prototypic ancillary equipment to support the core processing.


ASME 2009 International Mechanical Engineering Congress and Exposition | 2009

Scaled Experiments Evaluating Pulse Jet Mixing of Slurries

Judith Ann Bamberger; Perry A. Meyer; Carl W. Enderlin; James A. Fort; Beric E. Wells; Michael J. Minette; Carolyn A. Burns; Ellen Bk Baer; David E. Eakin; Monte R. Elmore; Sandra F. Snyder

Pulse jet mixing (PJM) tests with noncohesive solids in Newtonian liquid were conducted at three geometric scales to support the design of mixing systems for the Hanford Waste Treatment and Immobilization Plant. The test data will be used to develop mixing models. The models predict the cloud height (the height to which solids will be lifted by the PJM action) and the critical suspension velocity (the minimum velocity needed to ensure all solids have been lifted from the floor), two parameters measured during the tests. From the cloud height estimate, the concentration of solids near the vessel floor and the minimum velocity predicted to lift solids can be calculated. The test objective was to observe the influence of vertically downward-directed jets on noncohesive solids in a series of scaled tanks with several bottom shapes. The test tanks and bottom shapes included small- and large-scale tanks with elliptical bottoms, a mid-scale tank with a spherical bottom, and a large-scale tank with a flanged and dished bottom. During testing, the downward-directed jets were operated in either a steady flow condition or a pulsed (periodic) flow condition. The mobilization of the solids resulting from the jets was evaluated based on: the motion/agitation of the particulate on the tank floor and the elevation the solids reach within the tank; the height the solids material reaches in the tank is referred to as the cloud height (HC ).Copyright


Archive | 2015

Scoping Study of Airlift Circulation Technologies for Supplemental Mixing in Pulse Jet Mixed Vessels

Philip P. Schonewill; Eric J. Berglin; Gregory K. Boeringa; William C. Buchmiller; Carolyn A. Burns; Michael J. Minette

At the request of the U.S. Department of Energy Office of River Protection, Pacific Northwest National Laboratory (PNNL) conducted a scoping study to investigate supplemental technologies for supplying vertical fluid motion and enhanced mixing in Waste Treatment and Immobilization Plant (WTP) vessels designed for high solids processing. The study assumed that the pulse jet mixers adequately mix and shear the bottom portion of a vessel. Given that, the primary function of a supplemental technology should be to provide mixing and shearing in the upper region of a vessel. The objective of the study was to recommend a mixing technology and configuration that could be implemented in the 8-ft test vessel located at Mid-Columbia Engineering (MCE). Several mixing technologies, primarily airlift circulator (ALC) systems, were evaluated in the study. This technical report contains a review of ALC technologies, a description of the PNNL testing and accompanying results, and recommended features of an ALC system for further study.


ASME 2015 International Mechanical Engineering Congress and Exposition | 2015

Applying Hanford Tank Mixing Data to Define Pulse Jet Mixer Operation

Beric E. Wells; Judith Ann Bamberger; Kurt Recknagle; Carl W. Enderlin; Michael J. Minette; Langdon K. Holton

Pulse jet mixed (PJM) process vessels are being developed for storing, blending, and chemical processing of nuclear waste slurries at the Waste Treatment and Immobilization Plant (WTP) to be built at Hanford, Washington. These waste slurries exhibit variable process feed characteristics including Newtonian to non-Newtonian rheologies over a range of solids loadings. Waste feed to the WTP from the Hanford Tank Farms will be accomplished via the Waste Feed Delivery (WFD) system which includes million-gallon underground storage double-shell tanks (DSTs) with dual-opposed jet mixer pumps. Experience using WFD type jet mixer pumps to mobilize actual Hanford waste in DSTs may be used to establish design threshold criteria of interest to pulse jet mixed process vessel operation.This paper describes a method to evaluate the pulse jet mixed vessel capability to process waste based on information obtained during mobilizing and suspending waste by the WFD system jet mixer pumps in a DST. Calculations of jet velocity and wall shear stress in a specific pulse jet mixed process vessel were performed using a commercial computational fluid dynamics (CFD) code. The CFD-modelled process vessel consists of a 4.9-m- (16-ft-) diameter tank with a 2:1 semi-elliptical head, a single, 10-cm (4-in.) downward facing 60-degree conical nozzle, and a 0.61-m (24-in.) inside diameter PJM. The PJM is located at 70% of the vessel radius with the nozzle stand-off-distance 14 cm (6 in.) above the vessel head. The CFD modeled fluid velocity and wall shear stress can be used to estimate vessel waste-processing performance by comparison to available actual WFD system process data.Test data from the operation of jet mixer pumps in the 23-m (75-ft) diameter DSTs have demonstrated mobilization, solid particles in a sediment matrix were moved from their initial location, and suspension, mobilized solid particles were moved to a higher elevation in the vessel than their initial location, of waste solids. Jet mixer pumps were used in Hanford waste tank 241-AZ-101, and at least 95% of the 0.46-m (18-in.) deep sediment, with a shear strength of 1,500 to 4,200 Pa, was mobilized. Solids with a median particle size of 43 μm, 90th percentile of 94 μm, were suspended in tank 241-AZ-101 to at least 5.5 m (216 in.) above the vessel bottom. Analytical calculations for this jet mixer pump test were used to estimate the velocities and wall shear stress that mobilized and suspended the waste. These velocities and wall shear stresses provide design threshold criteria which are metrics for system performance that can be evaluated via testing. If the fluid motion in a specific pulse jet mixed process vessel meets or exceeds the fluid motion of the demonstrated performance in the WFD system, confidence is provided that that vessel will similarly mobilize and suspend those solids if they were within the WTP. The single PJM CFD-calculated jet velocity and wall shear stress compare favorably with the design threshold criterion estimated for the tank 241-AZ-101 process data. Therefore, for both mobilization and suspension, the performance data evaluated from the WFD system testing increases confidence that the performance of the pulse jet mixed process vessels will be sufficient to process that waste even if that waste is not fully characterized.Copyright


Volume 2, Fora: Cavitation and Multiphase Flow; Fluid Measurements and Instrumentation; Microfluidics; Multiphase Flows: Work in Progress | 2013

Physical Attributes of Pulse Jet Mixer Operation

William L. Kuhn; David R. Rector; Judith Ann Bamberger; Michael J. Minette

Vessels mixed using pulse jet mixers that produce a periodic, rather than steady, flow present challenges with respect to modeling slurry mixing. A PJM is a cylindrical tank within the mixed tank that has a conical bottom with an orifice through which process fluid cyclically enters and is expelled forcefully by pressurizing the air space above the liquid in the PJM. Between pulses, some of the solids settle from the slurry, which nominally is a failure in mixing, but during the pulses (if operated to attain bottom clearing conditions), all of the solids are resuspended and made available for processing or transfer. Overall, mixing is successful if the solids are processed and removed from the vessel as needed when averaged over repeated PJM cycles. This paper describes the physics of pulse jet mixing process based on physical observation during experiments and analysis of experimental concentration profile data obtained during the mixing cycle.Copyright


Volume 6: Fluids and Thermal Systems; Advances for Process Industries, Parts A and B | 2011

Assessment of Prototypic and Closed Loop Operation During Pulse Jet Mixer Tests With Non-Cohesive Solids to Develop Scale-Up Relationships

Judith Ann Bamberger; Michael J. Minette; Perry A. Meyer; James A. Fort; Ellen Bk Baer

The Hanford Waste Treatment Plant (WTP) in Richland, Washington is applying pulse jet mixer (PJM) technology for slurry mixing applications requiring solids mixing, solids suspension, fluid blending, and release of gases generated by radiolysis and thermal processes. Experiments were conducted to investigate pulse jet mixer performance in two different experimental configurations: one using intermittent flow through the pulse tube with non-prototypic refill and the other with prototypic reciprocating flow. Models developed to predict the critical suspension velocity (UCS ), cloud height, and concentration based on the intermittent flow data. This model under predicted the UCS condition for data obtained using prototypic reciprocating flow. When an adjustment to the settling velocity was incorporated into the model to address the effects of intermittent flow, the resulting reciprocating flow model more closely matched the experimental data.Copyright

Collaboration


Dive into the Michael J. Minette's collaboration.

Top Co-Authors

Avatar

Judith Ann Bamberger

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Ellen Bk Baer

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Leonard F. Pease

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Carl W. Enderlin

Battelle Memorial Institute

View shared research outputs
Top Co-Authors

Avatar

Satoru T. Yokuda

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Beric E. Wells

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Dean E. Kurath

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

James A. Fort

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Paul A. Scott

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Paul W. Eslinger

Pacific Northwest National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge