Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael J. Prather is active.

Publication


Featured researches published by Michael J. Prather.


Journal of Geophysical Research | 2006

Multimodel ensemble simulations of present-day and near-future tropospheric ozone

David S. Stevenson; F. Dentener; Martin G. Schultz; K. Ellingsen; T. van Noije; Oliver Wild; Guang Zeng; M. Amann; C. S. Atherton; N. Bell; D. Bergmann; Isabelle Bey; T. Butler; J. Cofala; W. J. Collins; R. G. Derwent; Ruth M. Doherty; J. Drevet; Henk Eskes; Arlene M. Fiore; M. Gauss; D. A. Hauglustaine; Larry W. Horowitz; Ivar S. A. Isaksen; M. Krol; Jean-Francois Lamarque; M. G. Lawrence; V. Montanaro; Jean-François Müller; G. Pitari

Global tropospheric ozone distributions, budgets, and radiative forcings from an ensemble of 26 state-of-the-art atmospheric chemistry models have been intercompared and synthesized as part of a wider study into both the air quality and climate roles of ozone. Results from three 2030 emissions scenarios, broadly representing optimistic, likely, and pessimistic options, are compared to a base year 2000 simulation. This base case realistically represents the current global distribution of tropospheric ozone. A further set of simulations considers the influence of climate change over the same time period by forcing the central emissions scenario with a surface warming of around 0.7K. The use of a large multimodel ensemble allows us to identify key areas of uncertainty and improves the robustness of the results. Ensemble mean changes in tropospheric ozone burden between 2000 and 2030 for the 3 scenarios range from a 5% decrease, through a 6% increase, to a 15% increase. The intermodel uncertainty (±1 standard deviation) associated with these values is about ±25%. Model outliers have no significant influence on the ensemble mean results. Combining ozone and methane changes, the three scenarios produce radiative forcings of -50, 180, and 300 mW m-2, compared to a CO 2 forcing over the same time period of 800-1100 mW m-2. These values indicate the importance of air pollution emissions in short- to medium-term climate forcing and the potential for stringent/lax control measures to improve/worsen future climate forcing. The model sensitivity of ozone to imposed climate change varies between models but modulates zonal mean mixing ratios by ±5 ppbv via a variety of feedback mechanisms, in particular those involving water vapor and stratosphere-troposphere exchange. This level of climate change also reduces the methane lifetime by around 4%. The ensemble mean year 2000 tropospheric ozone budget indicates chemical production, chemical destruction, dry deposition and stratospheric input fluxes of 5100, 4650, 1000 and 550 Tg(O 3 ) yr-1, respectively. These values are significantly different to the mean budget documented by the Intergovernmental Panel on Climate Change (IPCC) Third Assessment Report (TAR). The mean ozone burden (340 Tg(O 3 )) is 10% larger than the IPCC TAR estimate, while the mean ozone lifetime (22 days) is 10% shorter. Results from individual models show a correlation between ozone burden and lifetime, and each models ozone burden and lifetime respond in similar ways across the emissions scenarios. The response to climate change is much less consistent. Models show more variability in the tropics compared to midlatitudes. Some of the most uncertain areas of the models include treatments of deep tropical convection, including lightning NO x production; isoprene emissions from vegetation and isoprenes degradation chemistry; stratosphere-troposphere exchange; biomass burning; and water vapor concentrations. Copyright 2006 by the American Geophysical Union.


Journal of Geophysical Research | 1991

Three-Dimensional Model Synthesis of the Global Methane Cycle

Inez Y. Fung; Jasmin G. John; J. Lerner; Elaine Matthews; Michael J. Prather; L. P. Steele; Pj Fraser

The geographic and seasonal emission distributions of the major sources and sinks of atmospheric methane were compiled using methane flux measurements and energy and agricultural statistics in conjunction with global digital data bases of land surface characteristics and anthropogenic activities. Chemical destruction of methane in the atmosphere was calculated using three-dimensional OH fields every 5 days taken from Spivakovsky et al. (1990a, b). The signatures of each of the sources and sinks in the atmosphere were simulated using a global three-dimensional tracer transport model. Candidate methane budget scenarios were constructed according to mass balance of methane and its carbon isotopes. The verisimilitude of the scenarios was tested by their ability to reproduce the meridional gradient and seasonal variations of methane observed in the atmosphere. Constraints imposed by all the atmospheric observations are satisfied simultaneously by several budget scenarios. A preferred budget comprises annual destruction rates of 450 Tg by OH oxidation and 10 Tg by soil absorption and annual emissions of 80 Tg from fossil sources, 80 Tg from domestic animals, and 35 Tg from wetlands and tundra poleward of 50°N. Emissions from landfills, tropical swamps, rice fields, biomass burning, and termites total 295 Tg; however, the individual contributions of these terms cannot be determined uniquely because of the lack of measurements of direct fluxes and of atmospheric methane variations in regions where these sources are concentrated.


Journal of Geophysical Research | 2000

Three-dimensional climatological distribution of tropospheric OH: Update and evaluation

C. M. Spivakovsky; Jennifer A. Logan; Stephen A. Montzka; Yves Balkanski; M. Foreman-Fowler; Dylan B. A. Jones; Larry W. Horowitz; A. C. Fusco; Carl A. M. Brenninkmeijer; Michael J. Prather; Steven C. Wofsy; Michael B. McElroy

A global climatological distribution of tropospheric OH is computed using observed distributions of O3, H2O, NOt (NO2 +NO + 2N2O5 + NO3 + HNO2 +HNO4), CO, hydrocarbons, temperature, and cloud optical depth. Global annual mean OH is 1.16×106 molecules cm−3 (integrated with respect to mass of air up to 100 hPa within ±32° latitude and up to 200 hPa outside that region). Mean hemispheric concentrations of OH are nearly equal. While global mean OH increased by 33% compared to that from Spivakovsky et al. [1990], mean loss frequencies of CH3CCl3 and CH4 increased by only 23% because a lower fraction of total OH resides in the lower troposphere in the present distribution. The value for temperature used for determining lifetimes of hydrochlorofluorocarbons (HCFCs) by scaling rate constants [Prather and Spivakovsky, 1990] is revised from 277 K to 272 K. The present distribution of OH is consistent within a few percent with the current budgets of CH3CCl3 and HCFC-22. For CH3CCl3, it results in a lifetime of 4.6 years, including stratospheric and ocean sinks with atmospheric lifetimes of 43 and 80 years, respectively. For HCFC-22, the lifetime is 11.4 years, allowing for the stratospheric sink with an atmospheric lifetime of 229 years. Corrections suggested by observed levels of CH2Cl2 (annual means) depend strongly on the rate of interhemispheric mixing in the model. An increase in OH in the Northern Hemisphere by 20% combined with a decrease in the southern tropics by 25% is suggested if this rate is at its upper limit consistent with observations of CFCs and 85Kr. For the lower limit, observations of CH2Cl2 imply an increase in OH in the Northern Hemisphere by 35% combined with a decrease in OH in the southern tropics by 60%. However, such large corrections are inconsistent with observations for 14CO in the tropics and for the interhemispheric gradient of CH3CCl3. Industrial sources of CH2Cl2 are sufficient for balancing its budget. The available tests do not establish significant errors in OH except for a possible underestimate in winter in the northern and southern tropics by 15–20% and 10–15%, respectively, and an overestimate in southern extratropics by ∼25%. Observations of seasonal variations of CH3CCl3, CH2Cl2, 14CO, and C2H6 offer no evidence for higher levels of OH in the southern than in the northern extratropics. It is expected that in the next few years the latitudinal distribution and annual cycle of CH3CCl3 will be determined primarily by its loss frequency, allowing for additional constraints for OH on scales smaller than global.


Journal of Geophysical Research | 2003

Radiative forcing in the 21st century due to ozone changes in the troposphere and the lower stratosphere

M. Gauss; Gunnar Myhre; G. Pitari; Michael J. Prather; Ivar S. A. Isaksen; Terje K. Berntsen; Guy P. Brasseur; F. Dentener; R. G. Derwent; D. A. Hauglustaine; Larry W. Horowitz; Daniel J. Jacob; M. Johnson; Kathy S. Law; Loretta J. Mickley; J.-F. Müller; P.-H. Plantevin; J. A. Pyle; Helen Rogers; David S. Stevenson; Jostein K. Sundet; M. van Weele; Oliver Wild

ranging from 0.40 to 0.78 W m 2 on a global and annual average. The lower stratosphere contributes an additional 7.5–9.3 DU to the calculated increase in the ozone column, increasing radiative forcing by 0.15–0.17 W m 2 . The modeled radiative forcing depends on the height distribution and geographical pattern of predicted ozone changes and shows a distinct seasonal variation. Despite the large variations between the 11 participating models, the calculated range for normalized radiative forcing is within 25%, indicating the ability to scale radiative forcing to global-mean ozone column change. INDEX TERMS: 0365 Atmospheric Composition and Structure: Troposphere—composition and chemistry; 0341 Atmospheric Composition and Structure: Middle atmosphere—constituent transport and chemistry (3334) Citation: Gauss, M., et al., Radiative forcing in the 21st century due to ozone changes in the troposphere and the lower stratosphere, J. Geophys. Res., 108(D9), 4292, doi:10.1029/2002JD002624, 2003.


Journal of Geophysical Research | 2000

Stratospheric ozone in 3‐D models: A simple chemistry and the cross‐tropopause flux

Chris A. McLinden; S. Olsen; B. Hannegan; Oliver Wild; Michael J. Prather; Jostein K. Sundet

Two simple and computationally efficient models for simulating stratospheric ozone in three-dimensional global transport models are presented. The first, linearized ozone (or Linoz), is a first-order Taylor expansion of stratospheric chemical rates in which the ozone tendency has been linearized about the local ozone mixing ratio, temperature, and the overhead column ozone density. The second, synthetic ozone (or Synoz), is a passive, ozone-like tracer released into the stratosphere at a rate equivalent to that of the cross-tropopause ozone flux which, based on measurements and tracer-tracer correlations, we have calculated to be 475±120 Tg/yr. Linoz and Synoz have been evaluated in the UC Irvine chemical transport model (CTM) with three different archived meteorological fields: the Goddard Institute for Space Studies (GISS) general circulation model (GCM) version II′, the GISS GCM version II, and merged forecast data from the European Centre forecast model (EC/Oslo). Linoz produced realistic annual, cross-tropopause fluxes of 421 Tg/yr for the GISS II′ winds and 458 Tg/yr for the EC/Oslo winds; the GISS II winds produced an unrealistic flux of 790 Tg/yr. Linoz and Synoz profiles in the vicinity of the tropopause using the GISS II′ and EC/Oslo winds were found to be in good agreement with observations. We conclude that either approach may be adequate for a CTM focusing on tropospheric chemistry but that Linoz can also be used for calculating ozone fields interactively with the stratospheric circulation in a GCM. A future version of Linoz will allow for evolving background concentrations of key source gases, such as CH4 and N2O, and thus be applicable for long-term climate simulations.


Journal of Geophysical Research | 1997

NOx from lightning: 1. Global distribution based on lightning physics

Colin Price; Joyce E. Penner; Michael J. Prather

This paper begins a study on the role of lightning in maintaining the global distribution of nitrogen oxides (NOx) in the troposphere. It presents the first global and seasonal distributions of lightning-produced NOx (LNOx) based on the observed distribution of electrical storms and the physical properties of lightning strokes. We derive a global rate for cloud-to-ground (CG) flashes of 20–30 flashes/s with a mean energy per flash of 6.7×109 J. Intracloud (IC) flashes are more frequent, 50–70 flashes/s but have 10% of the energy of CG strokes and, consequently, produce significantly less NOx. It appears to us that the majority of previous studies have mistakenly assumed that all lightning flashes produce the same amount of NOx, thus overestimating the NOx production by a factor of 3. On the other hand, we feel these same studies have underestimated the energy released in CG flashes, resulting in two negating assumptions. For CG energies we adopt a production rate of 10×1016 molecules NO/J based on the current literature. Using a method to simulate global lightning frequencies from satellite-observed cloud data, we have calculated the LNOx on various spatial (regional, zonal, meridional, and global) and temporal scales (daily, monthly, seasonal, and interannual). Regionally, the production of LNOx is concentrated over tropical continental regions, predominantly in the summer hemisphere. The annual mean production rate is calculated to be 12.2 Tg N/yr, and we believe it extremely unlikely that this number is less than 5 or more than 20 Tg N/yr. Although most of LNOx, is produced in the lowest 5 km by CG lightning, convective mixing in the thunderstorms is likely to deposit large amounts of NOx, in the upper troposphere where it is important in ozone production. On an annual basis, 64% of the LNOx, is produced in the northern hemisphere, implying that the northern hemisphere should have natural ozone levels as much as 2 times greater than the southern hemisphere, even before anthropogenic influences. The amount of O3 produced from this NOx is expected to exceed the stratospheric source by a factor of 1.5, and thus the hemispheric asymmetry in LNOx would lead to a significant excess of northern hemisphere O3 even in the preindustrial troposphere. (The monthly climatologies for LNOx on a 1°×1° latitude-longitude grid can be obtained by e-mail to [email protected]).


Journal of Atmospheric Chemistry | 2000

Fast-J: Accurate Simulation of In- and Below-Cloud Photolysis in Tropospheric Chemical Models

Oliver Wild; Xin Zhu; Michael J. Prather

Photolysis rates in the troposphere are greatly affected by the presenceof cloud and aerosol layers. Yet, the spatial variability of theselayers along with the difficulty of multiple-scattering calculationsfor large particles makes their inclusion in 3-D chemical transportmodels computationally very expensive.This study presents a flexible and accurate photolysis scheme, Fast-J,which calculates photolysis rates in the presence of an arbitrary mix ofcloud and aerosol layers. The algorithm is sufficiently fast to allow thescheme to be incorporated into 3-D global chemical transport models andhave photolysis rates updated hourly. It enables tropospheric chemistrysimulations to include directly the physical properties of the scatteringand absorbing particles in the column, including the full, untruncatedscattering phase function and the total, uncorrected optical depth.The Fast-J scheme is compared with earlier methods that have been usedin 3-D models to parameterize the effects of clouds on photolysis rates.The impact of Fast-J on tropospheric ozone chemistry is demonstratedwith the UCI tropospheric CTM.


Global Biogeochemical Cycles | 2006

TransCom 3 inversion intercomparison: Impact of transport model errors on the interannual variability of regional CO2 fluxes, 1988–2003

D. F. Baker; R. M. Law; Kevin Robert Gurney; P. J. Rayner; Philippe Peylin; A. S. Denning; P. Bousquet; Lori Bruhwiler; Yu-Han Chen; P. Ciais; Inez Y. Fung; Martin Heimann; Jasmin G. John; Takashi Maki; Shamil Maksyutov; Kenneth A. Masarie; Michael J. Prather; Bernard Pak; Shoichi Taguchi; Zhengxin Zhu

Monthly CO2 fluxes are estimated across 1988–2003 for 22 emission regions using data from 78 CO2 measurement sites. The same inversion (method, priors, data) is performed with 13 different atmospheric transport models, and the spread in the results is taken as a measure of transport model error. Interannual variability (IAV) in the winds is not modeled, so any IAV in the measurements is attributed to IAV in the fluxes. When both this transport error and the random estimation errors are considered, the flux IAV obtained is statistically significant at P ≤ 0.05 when the fluxes are grouped into land and ocean components for three broad latitude bands, but is much less so when grouped into continents and basins. The transport errors have the largest impact in the extratropical northern latitudes. A third of the 22 emission regions have significant IAV, including the Tropical East Pacific (with physically plausible uptake/release across the 1997–2000 El Nino/La Nina) and Tropical Asia (with strong release in 1997/1998 coinciding with large-scale fires there). Most of the global IAV is attributed robustly to the tropical/southern land biosphere, including both the large release during the 1997/1998 El Nino and the post-Pinatubo uptake.


Global Biogeochemical Cycles | 2004

Transcom 3 inversion intercomparison: Model mean results for the estimation of seasonal carbon sources and sinks

Kevin Robert Gurney; R. M. Law; A. Scott Denning; P. J. Rayner; Bernard Pak; D. F. Baker; P. Bousquet; Lori Bruhwiler; Yu Han Chen; Philippe Ciais; Inez Y. Fung; Martin Heimann; Jasmin G. John; Takashi Maki; Shamil Maksyutov; Philippe Peylin; Michael J. Prather; Shoichi Taguchi

[1] The TransCom 3 experiment was begun to explore the estimation of carbon sources and sinks via the inversion of simulated tracer transport. We build upon previous TransCom work by presenting the seasonal inverse results which provide estimates of carbon flux for 11 land and 11 ocean regions using 12 atmospheric transport models. The monthly fluxes represent the mean seasonal cycle for the 1992 to 1996 time period. The spread among the model results is larger than the average of their estimated flux uncertainty in the northern extratropics and vice versa in the tropical regions. In the northern land regions, the model spread is largest during the growing season. Compared to a seasonally balanced biosphere prior flux generated by the CASA model, we find significant changes to the carbon exchange in the European region with greater growing season net uptake which persists into the fall months. Both Boreal North America and Boreal Asia show lessened net uptake at the onset of the growing season with Boreal Asia also exhibiting greater peak growing season net uptake. Temperate Asia shows a dramatic springward shift in the peak timing of growing season net uptake relative to the neutral CASA flux while Temperate North America exhibits a broad flattening of the seasonal cycle. In most of the ocean regions, the inverse fluxes exhibit much greater seasonality than that implied by the DpCO2 derived fluxes though this may be due, in part, to misallocation of adjacent land flux. In the Southern Ocean, the austral spring and fall exhibits much less carbon uptake than implied by DpCO2 derived fluxes. Sensitivity testing indicates that the inverse estimates are not overly influenced by the prior flux choices. Considerable agreement exists between the model mean, annual mean results of this study and that of the previously published TransCom annual mean inversion. The differences that do exist are in poorly constrained regions and tend to exhibit compensatory fluxes in order to match the global mass constraint. The differences between the estimated fluxes and the prior model over the northern land regions could be due to the prior model respiration response to temperature. Significant phase differences, such as that in the Temperate Asia region, may be due to the limited observations for that region. Finally, differences in the boreal land regions between the prior model and the estimated fluxes may be a reflection of the timing of spring thaw and an imbalance in respiration versus photosynthesis. INDEX TERMS: 0322 Atmospheric Composition and Structure: Constituent sources and sinks; 1615 Global Change: Biogeochemical processes (4805); 0315 Atmospheric Composition and Structure: Biosphere/atmosphere interactions; KEYWORDS: carbon transport, inversion


Journal of Geophysical Research | 1997

Evaluation and intercomparison of global atmospheric transport models using 222Rn and other short‐lived tracers

Daniel J. Jacob; Michael J. Prather; Philip J. Rasch; Run-Lie Shia; Yves Balkanski; S. R. Beagley; D. Bergmann; W. T. Blackshear; Margaret Brown; Masaru Chiba; M. P. Chipperfield; J. de Grandpré; Jane Dignon; Johann Feichter; Christophe Genthon; William L. Grose; Prasad S. Kasibhatla; Ines Köhler; Mark A. Kritz; Kathy S. Law; Joyce E. Penner; Michel Ramonet; C. E. Reeves; Douglas A. Rotman; Deianeira Z. Stockwell; Peter F. J. van Velthoven; Gé Verver; Oliver Wild; Hu Yang; Peter H. Zimmermann

Simulations of 222Rn and other short-lived tracers are used to evaluate and intercompare the representations of convective and synoptic processes in 20 global atmospheric transport models. Results show that most established three-dimensional models simulate vertical mixing in the troposphere to within the constraints offered by the observed mean 222Rn concentrations and that subgrid parameterization of convection is essential for this purpose. However, none of the models captures the observed variability of 222Rn concentrations in the upper troposphere, and none reproduces the high 222Rn concentrations measured at 200 hPa over Hawaii. The established three-dimensional models reproduce the frequency and magnitude of high-222Rn episodes observed at Crozet Island in the Indian Ocean, demonstrating that they can resolve the synoptic-scale transport of continental plumes with no significant numerical diffusion. Large differences between models are found in the rates of meridional transport in the upper troposphere (interhemispheric exchange, exchange between tropics and high latitudes). The four two-dimensional models which participated in the intercomparison tend to underestimate the rate of vertical transport from the lower to the upper troposphere but show concentrations of 222Rn in the lower troposphere that are comparable to the zonal mean values in the three-dimensional models.

Collaboration


Dive into the Michael J. Prather's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juno Hsu

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Larry W. Horowitz

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge