Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael J. Schwartz is active.

Publication


Featured researches published by Michael J. Schwartz.


IEEE Transactions on Geoscience and Remote Sensing | 2006

The Earth observing system microwave limb sounder (EOS MLS) on the aura Satellite

J. W. Waters; L. Froidevaux; R. S. Harwood; R. F. Jarnot; Herbert M. Pickett; William G. Read; Peter H. Siegel; Richard E. Cofield; Mark J. Filipiak; Dennis A. Flower; James R. Holden; Gary K. Lau; Nathaniel J. Livesey; G. L. Manney; Hugh C. Pumphrey; Michelle L. Santee; Dong L. Wu; David T. Cuddy; Richard R. Lay; Mario S. Loo; V. S. Perun; Michael J. Schwartz; Paul Stek; Robert P. Thurstans; Mark A. Boyles; Kumar M. Chandra; Marco C. Chavez; Gun-Shing Chen; Bharat V. Chudasama; Randy Dodge

The Earth Observing System Microwave Limb Sounder measures several atmospheric chemical species (OH, HO/sub 2/, H/sub 2/O, O/sub 3/, HCl, ClO, HOCl, BrO, HNO/sub 3/, N/sub 2/O, CO, HCN, CH/sub 3/CN, volcanic SO/sub 2/), cloud ice, temperature, and geopotential height to improve our understanding of stratospheric ozone chemistry, the interaction of composition and climate, and pollution in the upper troposphere. All measurements are made simultaneously and continuously, during both day and night. The instrument uses heterodyne radiometers that observe thermal emission from the atmospheric limb in broad spectral regions centered near 118, 190, 240, and 640 GHz, and 2.5 THz. It was launched July 15, 2004 on the National Aeronautics and Space Administrations Aura satellite and started full-up science operations on August 13, 2004. An atmospheric limb scan and radiometric calibration for all bands are performed routinely every 25 s. Vertical profiles are retrieved every 165 km along the suborbital track, covering 82/spl deg/S to 82/spl deg/N latitudes on each orbit. Instrument performance to date has been excellent; data have been made publicly available; and initial science results have been obtained.


Geophysical Research Letters | 2009

Aura Microwave Limb Sounder observations of dynamics and transport during the record-breaking 2009 Arctic stratospheric major warming

G. L. Manney; Michael J. Schwartz; Kirstin Krüger; Michelle L. Santee; Steven Pawson; Jae N. Lee; W. H. Daffer; R. Fuller; Nathaniel J. Livesey

A major stratospheric sudden warming (SSW) in January 2009 was the strongest and most prolonged on record. Aura Microwave Limb Sounder (MLS) observations are used to provide an overview of dynamics and transport during the 2009 SSW, and to compare with the intense, long-lasting SSW in January 2006. The Arctic polar vortex split during the 2009 SSW, whereas the 2006 SSW was a vortex displacement event. Winds reversed to easterly more rapidly and reverted to westerly more slowly in 2009 than in 2006. More mixing of trace gases out of the vortex during the decay of the vortex fragments, and less before the fulfillment of major SSW criteria, was seen in 2009 than in 2006; persistent well-defined fragments of vortex and anticyclone air were more prevalent in 2009. The 2009 SSW had a more profound impact on the lower stratosphere than any previously observed SSW, with no significant recovery of the vortex in that region. The stratopause breakdown and subsequent reformation at very high altitude, accompanied by enhanced descent into a rapidly strengthening upper stratospheric vortex, were similar in 2009 and 2006. Many differences between 2006 and 2009 appear to be related to the different character of the SSWs in the two years.


Journal of Geophysical Research | 2007

Validation of the Aura Microwave Limb Sounder middle atmosphere water vapor and nitrous oxide measurements

Alyn Lambert; William G. Read; Nathaniel J. Livesey; Michelle L. Santee; G. L. Manney; L. Froidevaux; Dong L. Wu; Michael J. Schwartz; Hugh C. Pumphrey; Carlos Jiménez; Gerald E. Nedoluha; R. E. Cofield; D. T. Cuddy; W. H. Daffer; Brian J. Drouin; R. Fuller; R. F. Jarnot; B. W. Knosp; Herbert M. Pickett; V. S. Perun; W. V. Snyder; P. C. Stek; R. P. Thurstans; Paul A. Wagner; J. W. Waters; Kenneth W. Jucks; G. C. Toon; R. A. Stachnik; Peter F. Bernath; C. D. Boone

[1] The quality of the version 2.2 (v2.2) middle atmosphere water vapor and nitrous oxide measurements from the Microwave Limb Sounder (MLS) on the Earth Observing System (EOS) Aura satellite is assessed. The impacts of the various sources of systematic error are estimated by a comprehensive set of retrieval simulations. Comparisons with correlative data sets from ground-based, balloon and satellite platforms operating in the UV/visible, infrared and microwave regions of the spectrum are performed. Precision estimates are also validated, and recommendations are given on the data usage. The v2.2 H2O data have been improved over v1.5 by providing higher vertical resolution in the lower stratosphere and better precision above the stratopause. The single-profile precision is � 0.2–0.3 ppmv (4–9%), and the vertical resolution is � 3–4 km in the stratosphere. The precision and vertical resolution become worse with increasing height above the stratopause. Over the pressure range 0.1–0.01 hPa the precision degrades from 0.4 to 1.1 ppmv (6–34%), and the vertical resolution degrades to � 12–16 km. The accuracy is estimated to be 0.2–0.5 ppmv (4–11%) for the pressure range 68–0.01 hPa. The scientifically useful range of the H2O data is from 316 to 0.002 hPa, although only the 82–0.002 hPa pressure range is validated here. Substantial improvement has been achieved in the v2.2 N2O data over v1.5 by reducing a significant low bias in the stratosphere and eliminating unrealistically high biased mixing ratios in the polar regions. The single-profile precision is � 13–25 ppbv (7–38%), the vertical resolution is � 4–6 km and the accuracy is estimated to be 3–70 ppbv (9–25%) for the pressure range 100–4.6 hPa. The scientifically useful range of the N2O data is from 100 to 1 hPa.


Journal of Geophysical Research | 2008

Validation of Aura Microwave Limb Sounder stratospheric ozone measurements

L. Froidevaux; Yibo Jiang; Alyn Lambert; Nathaniel J. Livesey; William G. Read; J. W. Waters; Edward V. Browell; J. W. Hair; M. Avery; T. J. McGee; Laurence Twigg; G. K. Sumnicht; K. W. Jucks; J. J. Margitan; B. Sen; R. A. Stachnik; G. C. Toon; Peter F. Bernath; C. D. Boone; Kaley A. Walker; Mark J. Filipiak; R. S. Harwood; R. Fuller; G. L. Manney; Michael J. Schwartz; W. H. Daffer; Brian J. Drouin; R. E. Cofield; D. T. Cuddy; R. F. Jarnot

[1] The Earth Observing System (EOS) Microwave Limb Sounder (MLS) aboard the Aura satellite has provided essentially daily global measurements of ozone (O3) profiles from the upper troposphere to the upper mesosphere since August of 2004. This paper focuses on validation of the MLS stratospheric standard ozone product and its uncertainties, as obtained from the 240 GHz radiometer measurements, with a few results concerning mesospheric ozone. We compare average differences and scatter from matched MLS version 2.2 profiles and coincident ozone profiles from other satellite instruments, as well as from aircraft lidar measurements taken during Aura Validation Experiment (AVE) campaigns. Ozone comparisons are also made between MLS and balloon-borne remote and in situ sensors. We provide a detailed characterization of random and systematic uncertainties for MLS ozone. We typically find better agreement in the comparisons using MLS version 2.2 ozone than the version 1.5 data. The agreement and the MLS uncertainty estimates in the stratosphere are often of the order of 5%, with values closer to 10% (and occasionally 20%) at the lowest stratospheric altitudes, where small positive MLS biases can be found. There is very good agreement in the latitudinal distributions obtained from MLS and from coincident profiles from other satellite instruments, as well as from aircraft lidar data along the MLS track.


Journal of Geophysical Research | 2008

The evolution of the stratopause during the 2006 major warming: Satellite data and assimilated meteorological analyses

G. L. Manney; Kirstin Krüger; Steven Pawson; Ken Minschwaner; Michael J. Schwartz; W. H. Daffer; Nathaniel J. Livesey; Martin G. Mlynczak; Ellis E. Remsberg; James M. Russell; J. W. Waters

Microwave Limb Sounder and Sounding of the Atmosphere with Broadband Emission Radiometry data provide the first opportunity to characterize the four-dimensional stratopause evolution throughout the life-cycle of a major stratospheric sudden warming (SSW). The polar stratopause, usually higher than that at midlatitudes, dropped by ∼30 km and warmed during development of a major “wave 1” SSW in January 2006, with accompanying mesospheric cooling. When the polar vortex broke down, the stratopause cooled and became ill-defined, with a nearly isothermal stratosphere. After the polar vortex started to recover in the upper stratosphere/lower mesosphere (USLM), a cool stratopause reformed above 75 km, then dropped and warmed; both the mesosphere above and the stratosphere below cooled at this time. The polar stratopause remained separated from that at midlatitudes across the core of the polar night jet. In the early stages of the SSW, the strongly tilted (westward with increasing altitude) polar vortex extended into the mesosphere, and enclosed a secondary temperature maximum extending westward and slightly equatorward from the highest altitude part of the polar stratopause over the cool stratopause near the vortex edge. The temperature evolution in the USLM resulted in strongly enhanced radiative cooling in the mesosphere during the recovery from the SSW, but significantly reduced radiative cooling in the upper stratosphere. Assimilated meteorological analyses from the European Centre for Medium-Range weather Forecasts (ECMWF) and Goddard Earth Observing System Version 5.0.1 (GEOS-5), which are not constrained by data at polar stratopause altitudes and have model tops near 80 km, could not capture the secondary temperature maximum or the high stratopause after the SSW; they also misrepresent polar temperature structure during and after the stratopause breakdown, leading to large biases in their radiative heating rates. ECMWF analyses represent the stratospheric temperature structure more accurately, suggesting a better representation of vertical motion; GEOS-5 analyses more faithfully describe stratopause level wind and wave amplitudes. The high-quality satellite temperature data used here provide the first daily, global, multiannual data sets suitable for assessing and, eventually, improving representation of the USLM in models and assimilation systems.


Journal of Geophysical Research | 2007

Validation of Aura Microwave Limb Sounder Ozone by ozonesonde and lidar measurements

Yibo Jiang; L. Froidevaux; Alyn Lambert; Nathaniel J. Livesey; William G. Read; J. W. Waters; Bojan Bojkov; Thierry Leblanc; I. S. McDermid; Sophie Godin-Beekmann; Mark J. Filipiak; R. S. Harwood; R. Fuller; W. H. Daffer; Brian J. Drouin; R. E. Cofield; D. T. Cuddy; R. F. Jarnot; B. W. Knosp; V. S. Perun; Michael J. Schwartz; W. V. Snyder; P. C. Stek; R. P. Thurstans; P. A. Wagner; M. Allaart; S. B. Andersen; G. E. Bodeker; B. Calpini; H. Claude

We present validation studies of MLS version 2.2 upper tropospheric and stratospheric ozone profiles using ozonesonde and lidar data as well as climatological data. Ozone measurements from over 60 ozonesonde stations worldwide and three lidar stations are compared with coincident MLS data. The MLS ozone stratospheric data between 150 and 3 hPa agree well with ozonesonde measurements, within 8% for the global average. MLS values at 215 hPa are biased high compared to ozonesondes by A`20% at middle to high latitude, although there is a lot of variability in this altitude region. Comparisons between MLS and ground-based lidar measurements from Mauna Loa, Hawaii, from the Table Mountain Facility, California, and from the Observatoire de Haute-Provence, France, give very good agreement, within A`5%, for the stratospheric values. The comparisons between MLS and the Table Mountain Facility tropospheric ozone lidar show that MLS data are biased high by A`30% at 215 hPa, consistent with that indicated by the ozonesonde data. We obtain better global average agreement between MLS and ozonesonde partial column values down to 215 hPa, although the average MLS values at low to middle latitudes are higher than the ozonesonde values by up to a few percent. MLS v2.2 ozone data agree better than the MLS v1.5 data with ozonesonde and lidar measurements. MLS tropical data show the wave one longitudinal pattern in the upper troposphere, with similarities to the average distribution from ozonesondes. High upper tropospheric ozone values are also observed by MLS in the tropical Pacific from June to November.


IEEE Transactions on Geoscience and Remote Sensing | 2006

Radiometric and spectral performance and calibration of the GHz bands of EOS MLS

R. F. Jarnot; V. S. Perun; Michael J. Schwartz

This paper describes radiometric performance and prelaunch radiometric and spectral calibrations of the GHz component of the Microwave Limb Sounder (MLS) experiment on NASAs Aura spacecraft. Estimated systematic scaling uncertainties (3/spl sigma/) on limb port radiances are /spl sim/0.5% from radiometric calibration and /spl sim/0.5% to /spl sim/1% from spectral calibrations. Operational noise performance is consistent with prelaunch expectations, and in-orbit measurements to date indicate no changes in noise characteristics, and no observable calibration drifts. Spectral baseline has remained stable to /spl sim/20 mK since launch. Refinements to calibrations based on in-flight data are discussed, and radiometric calibration algorithms are described.


Journal of Climate | 2014

Climatology of Upper Tropospheric–Lower Stratospheric (UTLS) Jets and Tropopauses in MERRA

G. L. Manney; M. I. Hegglin; W. H. Daffer; Michael J. Schwartz; Michelle L. Santee; Steven Pawson

AbstractA global climatology (1979–2012) from the Modern-Era Retrospective Analysis for Research and Applications (MERRA) shows distributions and seasonal evolution of upper tropospheric jets and their relationships to the stratospheric subvortex and multiple tropopauses. The overall climatological patterns of upper tropospheric jets confirm those seen in previous studies, indicating accurate representation of jet stream dynamics in MERRA. The analysis shows a Northern Hemisphere (NH) upper tropospheric jet stretching nearly zonally from the mid-Atlantic across Africa and Asia. In winter–spring, this jet splits over the eastern Pacific, merges again over eastern North America, and then shifts poleward over the North Atlantic. The jets associated with tropical circulations are also captured, with upper tropospheric westerlies demarking cyclonic flow downstream from the Australian and Asian monsoon anticyclones and associated easterly jets. Multiple tropopauses associated with the thermal tropopause “break”...


Journal of Geophysical Research | 2009

Validation of ground based microwave radiometers at 22 GHz for stratospheric and mesospheric water vapor

Alexander Haefele; E. De Wachter; Klemens Hocke; Niklaus Kämpfer; Gerald E. Nedoluha; R.M. Gomez; Patrick Eriksson; Peter Forkman; Alyn Lambert; Michael J. Schwartz

We present a detailed intercomparison of five ground-based 22 GHz microwave radiometers for stratospheric and mesospheric water vapor. Four of these instruments are members of the Network for the Detection of Atmospheric Composition Change (NDACC). The global measurements of middle atmospheric water vapor of the Microwave Limb Sounder (MLS) onboard the Aura satellite serve as reference and allow intercomparison of the ground-based systems that are located between 45 degrees S and 57 degrees N. The retrievals of water vapor profiles from the ground-based radiation measurements have been made consistent to a large extent: for the required temperature profiles, we used the global temperature measurements of MLS and we agreed on one common set of spectroscopic parameters. The agreement with the reference measurements is better than +/- 8% in the altitude range from 0.01 to 3 hPa. Strong correlation is found between the ground-based and the reference data in the mesosphere with respect to seasonal cycle and planetary waves. In the stratosphere the measurements are generally more noisy and become sensitive to instrumental instabilities toward lower levels (pressures greater than 3 hPa). We further present a compilation of a NDACC data set based on the retrieval parameters described herein but using a temperature climatology derived from the MLS record. This makes the ground-based measurements independent of additional information and allows extension of the data set for years in a homogeneous manner.


IEEE Transactions on Geoscience and Remote Sensing | 2006

EOS MLS forward model polarized radiative transfer for Zeeman-split oxygen lines

Michael J. Schwartz; William G. Read; W. Van Snyder

This work supplements the Earth Observing System (EOS) Microwave Limb Sounder (MLS) clear-sky unpolarized forward model with algorithms for modeling polarized emission from the Zeeman-split 118.75-GHz O/sub 2/ spectral line. The model accounts for polarization-dependent emission and for correlation between polarizations with complex, 2/spl times/2 intensity and absorption matrices. The oxygen line is split into three Zeeman components by the interaction of oxygens electronic spin with an external magnetic field, and the splitting is of order /spl plusmn/0.5 MHz in a typical geomagnetic field. Zeeman splitting is only significant at pressures low enough that collisional broadening (/spl sim/1.6 MHz/hPa) is not very large by comparison. The polarized forward model becomes significant for MLS temperature retrievals at pressure below 1.0 hPa and is crucial at pressures below /spl sim/0.03 hPa. Interaction of the O/sub 2/ molecule with the radiation field depends upon the relative orientation of the radiation polarization mode and the geomagnetic field direction. The model provides both limb radiances and the derivatives of these radiances with respect to atmospheric temperature and composition, as required by MLS temperature retrievals. EOS MLS views the atmospheric limb at 118.75 GHz with a pair of linear-cross-polarized, 100-kHz-resolution, 10-MHz-wide spectrometers. The antennas of the associated receivers are scanned to view rays with tangent heights from the Earths surface to 0.001 hPa. Comparisons of the modeled MLS radiances with measurements show generally good agreement in line positions and strengths, however residuals in the line centers at the highest tangent heights are larger than desired and still under investigation.

Collaboration


Dive into the Michael J. Schwartz's collaboration.

Top Co-Authors

Avatar

G. L. Manney

New Mexico Institute of Mining and Technology

View shared research outputs
Top Co-Authors

Avatar

Michelle L. Santee

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

William G. Read

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Nathaniel J. Livesey

Royal Netherlands Meteorological Institute

View shared research outputs
Top Co-Authors

Avatar

L. Froidevaux

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Alyn Lambert

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

W. H. Daffer

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. W. Waters

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

C. D. Boone

University of Waterloo

View shared research outputs
Researchain Logo
Decentralizing Knowledge