Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael J. Seminerio is active.

Publication


Featured researches published by Michael J. Seminerio.


Current Pharmaceutical Design | 2012

Sigma-1 receptors: potential targets for the treatment of substance abuse.

Matthew J. Robson; Bahar Noorbakhsh; Michael J. Seminerio; Rae R. Matsumoto

Drug abuse is currently a large economic and societal burden in countries around the globe. Many drugs of abuse currently lack adequate therapies aimed at treating both the addiction and negative complications often associated with their use. Sigma-1 receptors were discovered over 30 years ago and have recently become targets for the development of pharmacotherapies aimed at treating substance abuse and addiction. In vivo preclinical studies have revealed that sigma receptor ligands are able to ameliorate select behavioral effects of many drugs of abuse including cocaine, methamphetamine, ethanol and nicotine. In addition, recent studies have begun to elucidate the mechanisms by which sigma-1 receptors modulate the effects of these drugs on neurotransmission, gene regulation and neuroplasticity. Overall, these recent findings suggest that compounds targeting sigma-1 receptors may represent a potential new class of therapeutics aimed at treating drug abuse. Future studies involving clinical populations will be critical for validating the therapeutic potential of sigma-1 receptor ligands for the treatment of substance abuse.


European Neuropsychopharmacology | 2012

Evaluation of sigma (σ) receptors in the antidepressant-like effects of ketamine in vitro and in vivo.

Matthew J. Robson; Meenal Elliott; Michael J. Seminerio; Rae R. Matsumoto

Ketamine is an NMDA antagonist and dissociative anesthetic that has been shown to display rapid acting and prolonged antidepressant activity in small-scale human clinical trials. Ketamine also binds to σ receptors, which are believed to be protein targets for a potential new class of antidepressant medications. The purpose of this study was to determine the involvement of σ receptors in the antidepressant-like actions of ketamine. Competition binding assays were performed to assess the affinity of ketamine for σ(1) and σ(2) receptors. The antidepressant-like effects of ketamine were assessed in vitro using a neurite outgrowth model and PC12 cells, and in vivo using the forced swim test. The σ receptor antagonists, NE-100 and BD1047, were evaluated in conjunction with ketamine in these assays to determine the involvement of σ receptors in the antidepressant-like effects of ketamine. Ketamine bound to both σ(1) and σ(2) receptors with μM affinities. Additionally, ketamine potentiated NGF-induced neurite outgrowth in PC12 cells and this effect was attenuated in the presence of NE-100. Ketamine also displayed antidepressant-like effects in the forced swim test; however, these effects were not attenuated by pretreatment with NE-100 or BD1047. Taken together, these data suggest that σ receptor-mediated neuronal remodeling may contribute to the antidepressant effects of ketamine.


European Journal of Medicinal Chemistry | 2011

Synthesis and pharmacological evaluation of indole-based sigma receptor ligands

Christophe Mesangeau; Emanuele Amata; Walid Alsharif; Michael J. Seminerio; Matthew J. Robson; Rae R. Matsumoto; Jacques H. Poupaert; Christopher R. McCurdy

A series of novel indole-based analogs were prepared and their affinities for sigma receptors were determined using in vitro radioligand binding assays. The results of this study identified several compounds with nanomolar sigma-2 affinity and significant selectivity over sigma-1 receptors. In particular, 2-(4-(3-(4-fluorophenyl)indol-1-yl)butyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (9f) was found to display high affinity at sigma-2 receptors with good selectivity (σ-1/σ-2 = 395). The pharmacological binding profile for this compound was established with other relevant non-sigma sites.


Pharmacology & Therapeutics | 2014

Methamphetamine-induced toxicity: An updated review on issues related to hyperthermia

Rae R. Matsumoto; Michael J. Seminerio; Ryan C. Turner; Matthew J. Robson; Linda Nguyen; Diane B. Miller; James P. O'Callaghan

Reports of methamphetamine-related emergency room visits suggest that elevated body temperature is a universal presenting symptom, with lethal overdoses generally associated with extreme hyperthermia. This review summarizes the available information on methamphetamine toxicity as it pertains to elevations in body temperature. First, a brief overview of thermoregulatory mechanisms is presented. Next, central and peripheral targets that have been considered for potential involvement in methamphetamine hyperthermia are discussed. Finally, future areas of investigation are proposed, as further studies are needed to provide greater insight into the mechanisms that mediate the alterations in body temperature elicited by methamphetamine.


Neuropharmacology | 2011

CM156, a high affinity sigma ligand, attenuates the stimulant and neurotoxic effects of methamphetamine in mice.

Nidhi Kaushal; Michael J. Seminerio; Jamaluddin Shaikh; Mark A. Medina; Christophe Mesangeau; L. Wilson; Christopher R. McCurdy; Rae R. Matsumoto

Methamphetamine (METH) is a highly addictive psychostimulant drug of abuse. Low and high dose administration of METH leads to locomotor stimulation, and dopaminergic and serotonergic neurotoxicity, respectively. The behavioral stimulant and neurotoxic effects of METH can contribute to addiction and other neuropsychiatric disorders, thus necessitating the identification of potential pharmacotherapeutics against these effects produced by METH. METH binds to σ receptors at physiologically relevant concentrations. Also, σ receptors are present on and can modulate dopaminergic and serotonergic neurons. Therefore, σ receptors provide a viable target for the development of pharmacotherapeutics against the adverse effects of METH. In the present study, CM156, a σ receptor ligand with high affinity and selectivity for σ receptors over 80 other non-σ binding sites, was evaluated against METH-induced stimulant, hyperthermic, and neurotoxic effects. Pretreatment of male, Swiss Webster mice with CM156 dose dependently attenuated the locomotor stimulation, hyperthermia, striatal dopamine and serotonin depletions, and striatal dopamine and serotonin transporter reductions produced by METH, without significant effects of CM156 on its own. These results demonstrate the ability of a highly selective σ ligand to mitigate the effects of METH.


Pharmacology, Biochemistry and Behavior | 2011

Sigma (σ) receptor ligand, AC927 (N-phenethylpiperidine oxalate), attenuates methamphetamine-induced hyperthermia and serotonin damage in mice

Michael J. Seminerio; Nidhi Kaushal; Jamaluddin Shaikh; Jason D. Huber; Andrew Coop; Rae R. Matsumoto

Methamphetamine interacts with sigma (σ) receptors and AC927, a selective σ receptor ligand, protects against methamphetamine-induced dopaminergic neurotoxicity. In the present study, the effects of AC927 on methamphetamine-induced hyperthermia and striatal serotonergic neurotoxicity were evaluated. Male, Swiss Webster mice were injected (i.p.) every 2 h, for a total of four times, with one of the following treatments: Saline+Saline; Saline+Methamphetamine (5 mg/kg); AC927 (5, 10, 20 mg/kg)+Methamphetamine (5 mg/kg); or AC927 (5, 10, 20 mg/kg)+Saline. Pretreatment with AC927 (10 mg/kg) significantly attenuated methamphetamine-induced striatal serotonin depletions, striatal serotonin transporter reductions, and hyperthermia. At the doses tested, AC927 itself had no significant effects on serotonin levels, serotonin transporter expression, or body temperature. To evaluate the effects of higher ambient temperature on methamphetamine-induced neurotoxicity, groups of mice were treated at 37 °C. Overall, there was an inverse correlation between the body temperature of the animals and striatal serotonin levels. Together, the data suggest that AC927 (10 mg/kg) protects against methamphetamine-induced neurotoxicity. The reduction of methamphetamine-induced hyperthermia by AC927 may contribute to the observed neuroprotection in vivo.


The International Journal of Neuropsychopharmacology | 2013

The evaluation of AZ66, an optimized sigma receptor antagonist, against methamphetamine-induced dopaminergic neurotoxicity and memory impairment in mice

Michael J. Seminerio; Rolf Hansen; Nidhi Kaushal; Han-Ting Zhang; Christopher R. McCurdy; Rae R. Matsumoto

Sigma (σ) receptors have recently been identified as potential targets for the development of novel therapeutics aimed at mitigating the effects of methamphetamine. Particularly, σ receptors are believed to mitigate some of the neurotoxic effects of methamphetamine through modulation of dopamine, dopamine transporters and body temperature. Furthermore, recent evidence suggests that targeting σ receptors may prevent cognitive impairments produced by methamphetamine. In the present study, an optimized σ receptor antagonist, AZ66, was evaluated against methamphetamine-induced neurotoxicity and cognitive dysfunction. AZ66 was found to be highly selective for σ receptors compared to 64 other sites tested. Pretreatment of male, Swiss Webster mice with i.p. dosing of AZ66 significantly attenuated methamphetamine-induced striatal dopamine depletions, striatal dopamine transporter reductions and hyperthermia. Additionally, neurotoxic dosing with methamphetamine caused significant memory impairment in the object recognition test, which was attenuated when animals were pretreated with AZ66; similar trends were observed in the step-through passive avoidance test. Taken together, these results suggest that targeting σ receptors may provide neuroprotection against the neurotoxicity and cognitive impairments produced by methamphetamine.


European Neuropsychopharmacology | 2013

Pharmacological evaluation of SN79, a sigma (σ) receptor ligand, against methamphetamine-induced neurotoxicity in vivo

Nidhi Kaushal; Michael J. Seminerio; Matthew J. Robson; Christopher R. McCurdy; Rae R. Matsumoto

Methamphetamine is a highly addictive psychostimulant drug of abuse, causing hyperthermia and neurotoxicity at high doses. Currently, there is no clinically proven pharmacotherapy to treat these effects of methamphetamine, necessitating identification of potential novel therapeutic targets. Earlier studies showed that methamphetamine binds to sigma (σ) receptors in the brain at physiologically relevant concentrations, where it acts in part as an agonist. SN79 (6-acetyl-3-(4-(4-(4-florophenyl)piperazin-1-yl)butyl)benzo[d]oxazol-2(3H)-one) was synthesized as a putative σ receptor antagonist with nanomolar affinity and selectivity for σ receptors over 57 other binding sites. SN79 pretreatment afforded protection against methamphetamine-induced hyperthermia and striatal dopaminergic and serotonergic neurotoxicity in male, Swiss Webster mice (measured as depletions in striatal dopamine and serotonin levels, and reductions in striatal dopamine and serotonin transporter expression levels). In contrast, di-o-tolylguanidine (DTG), a well established σ receptor agonist, increased the lethal effects of methamphetamine, although it did not further exacerbate methamphetamine-induced hyperthermia. Together, the data implicate σ receptors in the direct modulation of some effects of methamphetamine such as lethality, while having a modulatory role which can mitigate other methamphetamine-induced effects such as hyperthermia and neurotoxicity.


Aaps Journal | 2012

Synthesis and Pharmacological Characterization of a Novel Sigma Receptor Ligand with Improved Metabolic Stability and Antagonistic Effects Against Methamphetamine

Michael J. Seminerio; Matthew J. Robson; Ahmed H. Abdelazeem; Christophe Mesangeau; Seshulatha Jamalapuram; Bonnie A. Avery; Christopher R. McCurdy; Rae R. Matsumoto

Methamphetamine interacts with sigma receptors at physiologically relevant concentrations suggesting a potential site for pharmacologic intervention. In the present study, a previous sigma receptor ligand, CM156, was optimized for metabolic stability, and the lead analog was evaluated against the behavioral effects of methamphetamine. Radioligand binding studies demonstrated that the lead analog, AZ66, displayed high nanomolar affinity for both sigma-1 and sigma-2 receptors (2.4u2009±u20090.63 and 0.51u2009±u20090.15, respectively). In addition, AZ66 had preferential affinity for sigma receptors compared to seven other sites and a significantly longer half-life than its predecessor, CM156, in vitro and in vivo. Pretreatment of male, Swiss Webster mice with intraperitoneal (10–20xa0mg/kg) or oral (20–30xa0mg/kg) dosing of AZ66 significantly attenuated the acute locomotor stimulatory effects of methamphetamine. Additionally, AZ66 (10–20xa0mg/kg, i.p.) significantly reduced the expression and development of behavioral sensitization induced by repeated methamphetamine administration. Taken together, these data indicate that sigma receptors can be targeted to mitigate the acute and subchronic behavioral effects of methamphetamine and AZ66 represents a viable lead compound in the development of novel therapeutics against methamphetamine-induced behaviors.


European Journal of Pharmacology | 2012

Sigma receptor antagonists attenuate acute methamphetamine-induced hyperthermia by a mechanism independent of IL-1β mRNA expression in the hypothalamus.

Michael J. Seminerio; Matthew J. Robson; Christopher R. McCurdy; Rae R. Matsumoto

Methamphetamine is currently one of the most widely abused drugs worldwide, with hyperthermia being a leading cause of death in methamphetamine overdose situations. Methamphetamine-induced hyperthermia involves a variety of cellular mechanisms, including increases in hypothalamic interleukin-1 beta (IL-1β) expression. Methamphetamine also interacts with sigma receptors and previous studies have shown that sigma receptor antagonists mitigate many of the behavioral and physiological effects of methamphetamine, including hyperthermia. The purpose of the current study was to determine if the attenuation of methamphetamine-induced hyperthermia by the sigma receptor antagonists, AZ66 and SN79, is associated with a concomitant attenuation of IL-1β mRNA expression, particularly in the hypothalamus. Methamphetamine produced dose- and time-dependent increases in core body temperature and IL-1β mRNA expression in the hypothalamus, striatum, and cortex in male, Swiss Webster mice. Pretreatment with the sigma receptor antagonists, AZ66 and SN79, significantly attenuated methamphetamine-induced hyperthermia, but further potentiated IL-1β mRNA in the mouse hypothalamus when compared to animals treated with methamphetamine alone. These findings suggest sigma receptor antagonists attenuate methamphetamine-induced hyperthermia through a different mechanism from that involved in the modulation of hypothalamic IL-1β mRNA expression.

Collaboration


Dive into the Michael J. Seminerio's collaboration.

Top Co-Authors

Avatar

Rae R. Matsumoto

Touro University California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nidhi Kaushal

West Virginia University

View shared research outputs
Top Co-Authors

Avatar

Andrew Coop

University of Maryland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge