Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael J. Stower is active.

Publication


Featured researches published by Michael J. Stower.


Cancer Research | 2005

Prospective Identification of Tumorigenic Prostate Cancer Stem Cells

Anne T. Collins; Paul A. Berry; Catherine Hyde; Michael J. Stower; Norman J. Maitland

Existing therapies for prostate cancer eradicates the bulk of cells within a tumor. However, most patients go on to develop androgen-independent disease that remains incurable by current treatment strategies. There is now increasing evidence in some malignancies that the tumor cells are organized as a hierarchy originating from rare stem cells that are responsible for maintaining the tumor. We report here the identification and characterization of a cancer stem cell population from human prostate tumors, which possess a significant capacity for self-renewal. These cells are also able to regenerate the phenotypically mixed populations of nonclonogenic cells, which express differentiated cell products, such as androgen receptor and prostatic acid phosphatase. The cancer stem cells have a CD44+/alpha2beta1hi/CD133+ phenotype, and we have exploited these markers to isolate cells from a series of prostate tumors with differing Gleason grade and metastatic states. Approximately 0.1% of cells in any tumor expressed this phenotype, and there was no correlation between the number of CD44+/alpha2beta1hi/CD133+ cells and tumor grade. The identification of a prostate cancer stem cell provides a powerful tool to investigate the tumorigenic process and to develop therapies targeted to the stem cell.


Genome Biology | 2008

Gene expression profiling of human prostate cancer stem cells reveals a pro-inflammatory phenotype and the importance of extracellular matrix interactions.

Richard Birnie; Steven Bryce; Claire Roome; Vincent Dussupt; Alastair Droop; Shona Lang; Paul A. Berry; Catherine Hyde; John L. Lewis; Michael J. Stower; Norman J. Maitland; Anne T. Collins

BackgroundThe tumor-initiating capacity of many cancers is considered to reside in a small subpopulation of cells (cancer stem cells). We have previously shown that rare prostate epithelial cells with a CD133+/α2β1hi phenotype have the properties of prostate cancer stem cells. We have compared gene expression in these cells relative to their normal and differentiated (CD133-/α2β1low) counterparts, resulting in an informative cancer stem cell gene-expression signature.ResultsCell cultures were generated from specimens of human prostate cancers (n = 12) and non-malignant control tissues (n = 7). Affymetrix gene-expression arrays were used to analyze total cell RNA from sorted cell populations, and expression changes were selectively validated by quantitative RT-PCR, flow cytometry and immunocytochemistry. Differential expression of multiple genes associated with inflammation, cellular adhesion, and metastasis was observed. Functional studies, using an inhibitor of nuclear factor κB (NF-κB), revealed preferential targeting of the cancer stem cell and progenitor population for apoptosis whilst sparing normal stem cells. NF-κB is a major factor controlling the ability of tumor cells to resist apoptosis and provides an attractive target for new chemopreventative and chemotherapeutic approaches.ConclusionWe describe an expression signature of 581 genes whose levels are significantly different in prostate cancer stem cells. Functional annotation of this signature identified the JAK-STAT pathway and focal adhesion signaling as key processes in the biology of cancer stem cells.


Cancer Research | 2013

JAK-STAT Blockade Inhibits Tumor Initiation and Clonogenic Recovery of Prostate Cancer Stem-like Cells

Paula Kroon; Paul A. Berry; Michael J. Stower; Greta Rodrigues; Vincent M. Mann; Matthew S. Simms; Deepak Bhasin; Somsundaram N. Chettiar; Chenglong Li; Pui-Kai Li; Norman J. Maitland; Anne T. Collins

Interleukin (IL)-6 overexpression and constitutive STAT3 activation occur in many cancers, including prostate cancer. However, their contribution to prostate stem and progenitor cells has not been explored. In this study, we show that stem-like cells from patients with prostate cancer secrete higher levels of IL-6 than their counterparts in non-neoplastic prostate. Tumor grade did not influence the levels of expression or secretion. Stem-like and progenitor cells expressed the IL-6 receptor gp80 with concomitant expression of pSTAT3. Blockade of activated STAT3, by either anti-IL-6 antibody siltuximab (CNTO 328) or LLL12, a specific pSTAT3 inhibitor, suppressed the clonogenicity of the stem-like cells in patients with high-grade disease. In a murine xenograft model used to determine the in vivo effects of pSTAT3 suppression, LLL12 treatment effectively abolished outgrowth of a patient-derived castrate-resistant tumor. Our results indicate that the most primitive cells in prostate cancer require pSTAT3 for survival, rationalizing STAT3 as a therapeutic target to treat advanced prostate cancer.


American Journal of Pathology | 2004

Activation of Peroxisome Proliferator-Activated Receptor-γ Reverses Squamous Metaplasia and Induces Transitional Differentiation in Normal Human Urothelial Cells

Claire L. Varley; Jens Stahlschmidt; Barbara L. Smith; Michael J. Stower; Jennifer Southgate

We observed that in urothelium, both cornifying and noncornifying forms of squamous metaplasia are accompanied by changes in the localization of the nuclear hormone receptors, peroxisome proliferator activated receptor gamma (PPAR-gamma) and retinoid X receptor (RXR-alpha). To obtain objective evidence for a role for PPAR-gamma-mediated signaling in urothelial differentiation, we examined expression of the cytokeratin isotypes CK13, CK20, and CK14 as indicators of transitional, terminal transitional, and squamous differentiation, respectively, in cultures of normal human urothelial cells. In control culture conditions, normal human urothelial cells showed evidence of squamous differentiation (CK14+, CK13-, CK20-). Treatment with the high-affinity PPAR-gamma agonist, troglitazone (TZ), resulted in gain of CK13 and loss of CK14 protein expression. The effect of TZ was significantly augmented when the autocrine-stimulated epidermal growth factor receptor pathway was inhibited and this resulted in induction of CK20 expression. The RXR-specific inhibitors PA452, HX531, and HX603 inhibited the TZ-induced CK13 expression, supporting a role for RXR in the induction of CK13 expression. Thus, signaling through PPAR-gamma can mediate transitional differentiation of urothelial cells and this is modulated by growth regulatory programs.


British Journal of Cancer | 2000

In vitro modelling of epithelial and stromal interactions in non-malignant and malignant prostates

Shona Lang; Michael J. Stower; Norman J. Maitland

To study the effects of stromal epithelial cell interactions on prostate cancer metastasis, we have used primary human prostatic stromal cells derived from malignant and non-malignant tissues and established epithelial cell lines from normal (PNT1a and PNT2-C2) and tumour (PC-3, DU145 and LNCaP) origins. The effects of stromal cells on epithelial cell growth were studied in direct and indirect (using culture inserts) co-culture and by exposure to stromal cell-conditioned medium (assessed by MTT assay). The influence of stromal cells on epithelial cell invasion was measured using matrigel invasion chambers and on epithelial cell motility using time lapse microscopy. Results indicated that epithelial cell line growth was similarly unaffected or inhibited by stromal cells derived from malignant (n = 8) or non-malignant tissue (n = 8). In contrast, PNT2-C2 and PC-3 cells were found to be the least and the most invasive and motile epithelia respectively. Stromal cultures enhanced the invasion of both epithelial cells, but no differences were observed between the use of malignant and non-malignant tissues. All stromal cultures modestly stimulated PNT2-C2 motility but displayed a greater stimulation of PC-3 cell motility, while stromal cells derived from malignant tissue stimulated PNT2-C2 and PC-3 cell motility more than stromal cultures from non-malignant tissues.


Nature Communications | 2013

Monoallelic expression of TMPRSS2/ERG in prostate cancer stem cells

Euan S. Polson; John L. Lewis; Hamza Celik; Vincent M. Mann; Michael J. Stower; Matthew S. Simms; Greta Rodrigues; Anne T. Collins; Norman J. Maitland

While chromosomal translocations have a fundamental role in the development of several human leukaemias, their role in solid tumour development has been somewhat more controversial. Recently, it was shown that up to 80% of prostate tumours harbour at least one such gene fusion, and that the most common fusion event, between the prostate-specific TMPRSS2 gene and the ERG oncogene, is a critical, and probably early factor in prostate cancer development. Here we demonstrate the presence and expression of this significant chromosomal rearrangement in prostate cancer stem cells. Moreover, we show that in the prostate epithelial hierarchy from both normal and tumour tissues, TMPRSS2 transcription is subjected to tight monoallelic regulation, which is retained upon asymmetric division and relaxed during epithelial cell differentiation. The presence and expression of TMPRSS2/ERG in prostate stem cells would provide ERG-driven survival advantages, allowing maintenance of this mutated genotype.


Ernst Schering Foundation symposium proceedings | 2007

Prostate Cancer Stem Cells: A Target for New Therapies

Norman J. Maitland; Steven Bryce; Michael J. Stower; Anne T. Collins

Prostate cancer is now a common disease in men over 50 years of age. Medical therapies for prostate cancer are based on discoveries from the mid-twentieth century, and in the long term are rarely curative. Most treatments are directed towards an androgen receptor-expressing, highly proliferative target cell, which does indeed form the vast majority of cells in a prostate tumour. However, by invoking the existence of a cancer stem cell which, like normal epithelial stem cells in the prostate, does not express androgen receptor and is relatively quiescent, the observed resistance to most medical therapies can be explained. The phenotype of the prostate cancer stem cells is that of a basal cell and cultures derived from cancers, but not benign tissues, express a range of prostate cancer-associated RNAs. Furthermore, stem cells purified on the basis of alpha2beta1 high integrin and CD133 cell surface antigen expression, from an established culture of Gleason 4 (2+2) prostate cancer (P4E6), were able to form multiple intraprostatic tumours in nude mice when grafted orthotopically in a matrigel plug containing human prostatic stroma. The final tumours reexpressed androgen receptor and displayed a histology similar to that of a Gleason 4 cancer.


Molecular Cancer | 2011

Regulation of the stem cell marker CD133 is independent of promoter hypermethylation in human epithelial differentiation and cancer

Davide Pellacani; Richard J Packer; Fiona M. Frame; Emma E. Oldridge; Paul A. Berry; Marie-Christine Labarthe; Michael J. Stower; Matthew S. Simms; Anne T. Collins; Norman J. Maitland

BackgroundEpigenetic control is essential for maintenance of tissue hierarchy and correct differentiation. In cancer, this hierarchical structure is altered and epigenetic control deregulated, but the relationship between these two phenomena is still unclear. CD133 is a marker for adult stem cells in various tissues and tumour types. Stem cell specificity is maintained by tight regulation of CD133 expression at both transcriptional and post-translational levels. In this study we investigated the role of epigenetic regulation of CD133 in epithelial differentiation and cancer.MethodsDNA methylation analysis of the CD133 promoter was done by pyrosequencing and methylation specific PCR; qRT-PCR was used to measure CD133 expression and chromatin structure was determined by ChIP. Cells were treated with DNA demethylating agents and HDAC inhibitors. All the experiments were carried out in both cell lines and primary samples.ResultsWe found that CD133 expression is repressed by DNA methylation in the majority of prostate epithelial cell lines examined, where the promoter is heavily CpG hypermethylated, whereas in primary prostate cancer and benign prostatic hyperplasia, low levels of DNA methylation, accompanied by low levels of mRNA, were found. Moreover, differential methylation of CD133 was absent from both benign or malignant CD133+/α2β1integrinhi prostate (stem) cells, when compared to CD133-/α2β1integrinhi (transit amplifying) cells or CD133-/α2β1integrinlow (basal committed) cells, selected from primary epithelial cultures. Condensed chromatin was associated with CD133 downregulation in all of the cell lines, and treatment with HDAC inhibitors resulted in CD133 re-expression in both cell lines and primary samples.ConclusionsCD133 is tightly regulated by DNA methylation only in cell lines, where promoter methylation and gene expression inversely correlate. This highlights the crucial choice of cell model systems when studying epigenetic control in cancer biology and stem cell biology. Significantly, in both benign and malignant prostate primary tissues, regulation of CD133 is independent of DNA methylation, but is under the dynamic control of chromatin condensation. This indicates that CD133 expression is not altered in prostate cancer and it is consistent with an important role for CD133 in the maintenance of the hierarchical cell differentiation patterns in cancer.


In Vitro Cellular & Developmental Biology – Animal | 2006

DIFFERENTIATION OF PROSTATE EPITHELIAL CELL CULTURES BY MATRIGEL/ STROMAL CELL GLANDULAR RECONSTRUCTION

Shona Lang; Joel Smith; Catherine Hyde; Catherine A. Macintosh; Michael J. Stower; Norman J. Maitland

SummaryThree-dimensional epithelial culture models are widely used to emulate a more physiologically relevant microenvironment for the study of genes and signaling pathways. Prostate epithelial cells can grow into solid cell masses or acinus-like spheroids in Matrigel. To test if the ability to form acinus-like spheroids in Matrigel is dependent on how undifferentiated a cell is or whether it is tumor or nontumor, we established six novel epithelial cell lines. Primary prostate epithelial cells were immortalized using HPV16 E6 gene transduction and were named Shmac 2, 3, and 6 (nontumor); Shmac 4, Shmac 5, and P4E6 (tumor). All cell lines were phenotyped in monolayer culture, and their ability to form acinus-like spheroids in Matrigel investigated. The cell lines exhibited a wide range of population doubling times and all showed an intermediate phenotype in nonolayer culture (luminalCK+/basalCK+/CD44+/PSA+/AR−). Only Shmac 5 cells formed acinus-like spheroids when cultured in Matrigel. Co-culture of the spheroids with fibroblasts advanced differentiation by inducing androgen receptor expression and epithelial polarization. Our findings indicate that tumor cells can form acinus-like spheroids in Matrigel.


PLOS ONE | 2013

Differential Cytotoxic Activity of a Novel Palladium-Based Compound on Prostate Cell Lines, Primary Prostate Epithelial Cells and Prostate Stem Cells

Engin Ulukaya; Fiona M. Frame; Buse Cevatemre; Davide Pellacani; Hannah F. Walker; Vincent M. Mann; Matthew S. Simms; Michael J. Stower; Veysel T. Yilmaz; Norman J. Maitland

The outcome for patients with advanced metastatic and recurrent prostate cancer is still poor. Therefore, new chemotherapeutics are required, especially for killing cancer stem cells that are thought to be responsible for disease recurrence. In this study, we screened the effect of a novel palladium-based anticancer agent (Pd complex) against six different prostate cancer cell lines, and primary cultures from seven Gleason 6/7 prostate cancer, three Gleason 8/9 prostate cancer and four benign prostate hyperplasia patient samples, as well as cancer stem cells selected from primary cultures. MTT and ATP viability assays were used to assess cell growth and flow cytometry to assess cell cycle status. In addition, immunofluorescence was used to detect γH2AX nuclear foci, indicative of DNA damage, and Western blotting to assess the induction of apoptosis and autophagy. The Pd complex showed a powerful growth-inhibitory effect against both cell lines and primary cultures. More importantly, it successfully reduced the viability of cancer stem cells as first reported in this study. The Pd complex induced DNA damage and differentially induced evidence of cell death, as well as autophagy. In conclusion, this novel agent may be promising for use against the bulk of the tumour cell population as well as the prostate cancer stem cells, which are thought to be responsible for the resistance of metastatic prostate cancer to chemotherapy. This study also indicates that the combined use of the Pd complex with an autophagy modulator may be a more promising approach to treat prostate cancer. In addition, the differential effects observed between cell lines and primary cells emphasise the importance of the model used to test novel drugs including its genetic background, and indeed the necessity of using cells cultured from patient samples.

Collaboration


Dive into the Michael J. Stower's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge