Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fiona M. Frame is active.

Publication


Featured researches published by Fiona M. Frame.


Hormones and Cancer | 2011

Prostate Cancer Stem Cells: Do They Have a Basal or Luminal Phenotype?

Norman J. Maitland; Fiona M. Frame; Euan S. Polson; John L. Lewis; Anne T. Collins

The prostate is a luminal secretory tissue whose function is regulated by male sex hormones. Castration produces involution of the prostate to a reversible basal state, and as the majority of prostate cancers also have a luminal phenotype, drug-induced castration is a front line therapy. It has therefore been assumed that the tumor arises from transformation of a luminal progenitor cell. Here, we demonstrate that a minority basal “cancer stem cell” (CSC) population persists in primary human prostate cancers, as in normal prostate, serving as a reservoir for tumor recurrence after castration therapy. While the CSCs exhibit a degree of phenotypic fluidity from different patients, the tumor-initiating cells in immunocompromised mice express basal markers (such as p63), but do not express androgen receptor (AR) or markers of luminal differentiation (PSA, PAP) when freshly fractionated from human tissues or following culture in vitro. Estrogen receptors α and β and AR are transcriptionally active in the transit amplifying (TA) cell (the progeny of SC). However, AR protein is consistently undetectable in TA cells. The prostate-specific TMPRSS2 gene, while upregulated by AR activity in luminal cells, is also transcribed in basal populations, confirming that AR acts as an expression modulator. Selected cells with basal phenotypes are tumor initiating, but the resultant tumors are phenotypically intermediate, with focal expression of AR, AMACR, and p63. In vitro differentiation experiments, employing lentivirally transduced SCs with a luminal (PSA-probasin) promoter regulating a fluorescent indicator gene, confirm that the basal SCs are the source of luminal progeny.


British Journal of Cancer | 2015

Low-temperature plasma treatment induces DNA damage leading to necrotic cell death in primary prostate epithelial cells

Adam M. Hirst; Matthew S. Simms; Vincent M. Mann; Norman J. Maitland; Deborah O'Connell; Fiona M. Frame

Background:In recent years, the rapidly advancing field of low-temperature atmospheric pressure plasmas has shown considerable promise for future translational biomedical applications, including cancer therapy, through the generation of reactive oxygen and nitrogen species.Method:The cytopathic effect of low-temperature plasma was first verified in two commonly used prostate cell lines: BPH-1 and PC-3 cells. The study was then extended to analyse the effects in paired normal and tumour (Gleason grade 7) prostate epithelial cells cultured directly from patient tissue. Hydrogen peroxide (H2O2) and staurosporine were used as controls throughout.Results:Low-temperature plasma (LTP) exposure resulted in high levels of DNA damage, a reduction in cell viability, and colony-forming ability. H2O2 formed in the culture medium was a likely facilitator of these effects. Necrosis and autophagy were recorded in primary cells, whereas cell lines exhibited apoptosis and necrosis.Conclusions:This study demonstrates that LTP treatment causes cytotoxic insult in primary prostate cells, leading to rapid necrotic cell death. It also highlights the need to study primary cultures in order to gain more realistic insight into patient response.


British Journal of Cancer | 2013

HDAC inhibitor confers radiosensitivity to prostate stem-like cells

Fiona M. Frame; Davide Pellacani; Anne T. Collins; Matthew S. Simms; Vincent M. Mann; Gdd Jones; Mark Meuth; Robert G. Bristow; Norman J. Maitland

Background:Radiotherapy can be an effective treatment for prostate cancer, but radiorecurrent tumours do develop. Considering prostate cancer heterogeneity, we hypothesised that primitive stem-like cells may constitute the radiation-resistant fraction.Methods:Primary cultures were derived from patients undergoing resection for prostate cancer or benign prostatic hyperplasia. After short-term culture, three populations of cells were sorted, reflecting the prostate epithelial hierarchy, namely stem-like cells (SCs, α2β1integrinhi/CD133+), transit-amplifying (TA, α2β1integrinhi/CD133−) and committed basal (CB, α2β1integrinlo) cells. Radiosensitivity was measured by colony-forming efficiency (CFE) and DNA damage by comet assay and DNA damage foci quantification. Immunofluorescence and flow cytometry were used to measure heterochromatin. The HDAC (histone deacetylase) inhibitor Trichostatin A was used as a radiosensitiser.Results:Stem-like cells had increased CFE post irradiation compared with the more differentiated cells (TA and CB). The SC population sustained fewer lethal double-strand breaks than either TA or CB cells, which correlated with SCs being less proliferative and having increased levels of heterochromatin. Finally, treatment with an HDAC inhibitor sensitised the SCs to radiation.Interpretation:Prostate SCs are more radioresistant than more differentiated cell populations. We suggest that the primitive cells survive radiation therapy and that pre-treatment with HDAC inhibitors may sensitise this resistant fraction.


Advances in Experimental Medicine and Biology | 2011

Cancer Stem Cells, Models of Study and Implications of Therapy Resistance Mechanisms

Fiona M. Frame; Norman J. Maitland

There is now compelling evidence for tumour initiating or cancer stem cells (CSCs) in human cancers. The current evidence of this CSC hypothesis, the CSC phenotype and methods of identification, culture and in vitro modelling will be presented, with an emphasis on prostate cancer. Inherent in the CSC hypothesis is their dual role, as a tumour-initiating cell, and as a source of treatment-resistant cells; the mechanisms behind therapeutic resistance will be discussed. Such resistance is a consequence of the unique CSC phenotype, which differs from the differentiated progeny, which make up the bulk of a tumour. It seems that to target the whole tumour, employing traditional therapies to target bulk populations alongside targeted CSC-specific drugs, provides the best hope of lasting treatment or even cure.


Tumor Biology | 2016

Low temperature plasmas as emerging cancer therapeutics: the state of play and thoughts for the future

Adam M. Hirst; Fiona M. Frame; Manit Arya; Norman J. Maitland; Deborah O’Connell

The field of plasma medicine has seen substantial advances over the last decade, with applications developed for bacterial sterilisation, wound healing and cancer treatment. Low temperature plasmas (LTPs) are particularly suited for medical purposes since they are operated in the laboratory at atmospheric pressure and room temperature, providing a rich source of reactive oxygen and nitrogen species (RONS). A great deal of research has been conducted into the role of reactive species in both the growth and treatment of cancer, where long-established radio- and chemo-therapies exploit their ability to induce potent cytopathic effects. In addition to producing a plethora of RONS, LTPs can also create strong electroporative fields. From an application perspective, it has been shown that LTPs can be applied precisely to a small target area. On this basis, LTPs have been proposed as a promising future strategy to accurately and effectively control and eradicate tumours. This review aims to evaluate the current state of the literature in the field of plasma oncology and highlight the potential for the use of LTPs in combination therapy. We also present novel data on the effect of LTPs on cancer stem cells, and speculatively outline how LTPs could circumvent treatment resistance encountered with existing therapeutics.


BioMed Research International | 2014

Low Temperature Plasma: A Novel Focal Therapy for Localized Prostate Cancer?

Adam M. Hirst; Fiona M. Frame; Norman J. Maitland; Deborah O'Connell

Despite considerable advances in recent years for the focal treatment of localized prostate cancer, high recurrence rates and detrimental side effects are still a cause for concern. In this review, we compare current focal therapies to a potentially novel approach for the treatment of early onset prostate cancer: low temperature plasma. The rapidly evolving plasma technology has the potential to deliver a wide range of promising medical applications via the delivery of plasma-induced reactive oxygen and nitrogen species. Studies assessing the effect of low temperature plasma on cell lines and xenografts have demonstrated DNA damage leading to apoptosis and reduction in cell viability. However, there have been no studies on prostate cancer, which is an obvious candidate for this novel therapy. We present here the potential of low temperature plasma as a focal therapy for prostate cancer.


Molecular Cancer | 2011

Regulation of the stem cell marker CD133 is independent of promoter hypermethylation in human epithelial differentiation and cancer

Davide Pellacani; Richard J Packer; Fiona M. Frame; Emma E. Oldridge; Paul A. Berry; Marie-Christine Labarthe; Michael J. Stower; Matthew S. Simms; Anne T. Collins; Norman J. Maitland

BackgroundEpigenetic control is essential for maintenance of tissue hierarchy and correct differentiation. In cancer, this hierarchical structure is altered and epigenetic control deregulated, but the relationship between these two phenomena is still unclear. CD133 is a marker for adult stem cells in various tissues and tumour types. Stem cell specificity is maintained by tight regulation of CD133 expression at both transcriptional and post-translational levels. In this study we investigated the role of epigenetic regulation of CD133 in epithelial differentiation and cancer.MethodsDNA methylation analysis of the CD133 promoter was done by pyrosequencing and methylation specific PCR; qRT-PCR was used to measure CD133 expression and chromatin structure was determined by ChIP. Cells were treated with DNA demethylating agents and HDAC inhibitors. All the experiments were carried out in both cell lines and primary samples.ResultsWe found that CD133 expression is repressed by DNA methylation in the majority of prostate epithelial cell lines examined, where the promoter is heavily CpG hypermethylated, whereas in primary prostate cancer and benign prostatic hyperplasia, low levels of DNA methylation, accompanied by low levels of mRNA, were found. Moreover, differential methylation of CD133 was absent from both benign or malignant CD133+/α2β1integrinhi prostate (stem) cells, when compared to CD133-/α2β1integrinhi (transit amplifying) cells or CD133-/α2β1integrinlow (basal committed) cells, selected from primary epithelial cultures. Condensed chromatin was associated with CD133 downregulation in all of the cell lines, and treatment with HDAC inhibitors resulted in CD133 re-expression in both cell lines and primary samples.ConclusionsCD133 is tightly regulated by DNA methylation only in cell lines, where promoter methylation and gene expression inversely correlate. This highlights the crucial choice of cell model systems when studying epigenetic control in cancer biology and stem cell biology. Significantly, in both benign and malignant prostate primary tissues, regulation of CD133 is independent of DNA methylation, but is under the dynamic control of chromatin condensation. This indicates that CD133 expression is not altered in prostate cancer and it is consistent with an important role for CD133 in the maintenance of the hierarchical cell differentiation patterns in cancer.


PLOS ONE | 2013

Differential Cytotoxic Activity of a Novel Palladium-Based Compound on Prostate Cell Lines, Primary Prostate Epithelial Cells and Prostate Stem Cells

Engin Ulukaya; Fiona M. Frame; Buse Cevatemre; Davide Pellacani; Hannah F. Walker; Vincent M. Mann; Matthew S. Simms; Michael J. Stower; Veysel T. Yilmaz; Norman J. Maitland

The outcome for patients with advanced metastatic and recurrent prostate cancer is still poor. Therefore, new chemotherapeutics are required, especially for killing cancer stem cells that are thought to be responsible for disease recurrence. In this study, we screened the effect of a novel palladium-based anticancer agent (Pd complex) against six different prostate cancer cell lines, and primary cultures from seven Gleason 6/7 prostate cancer, three Gleason 8/9 prostate cancer and four benign prostate hyperplasia patient samples, as well as cancer stem cells selected from primary cultures. MTT and ATP viability assays were used to assess cell growth and flow cytometry to assess cell cycle status. In addition, immunofluorescence was used to detect γH2AX nuclear foci, indicative of DNA damage, and Western blotting to assess the induction of apoptosis and autophagy. The Pd complex showed a powerful growth-inhibitory effect against both cell lines and primary cultures. More importantly, it successfully reduced the viability of cancer stem cells as first reported in this study. The Pd complex induced DNA damage and differentially induced evidence of cell death, as well as autophagy. In conclusion, this novel agent may be promising for use against the bulk of the tumour cell population as well as the prostate cancer stem cells, which are thought to be responsible for the resistance of metastatic prostate cancer to chemotherapy. This study also indicates that the combined use of the Pd complex with an autophagy modulator may be a more promising approach to treat prostate cancer. In addition, the differential effects observed between cell lines and primary cells emphasise the importance of the model used to test novel drugs including its genetic background, and indeed the necessity of using cells cultured from patient samples.


Experimental Cell Research | 2010

Development and limitations of lentivirus vectors as tools for tracking differentiation in prostate epithelial cells

Fiona M. Frame; Stefanie Hager; Davide Pellacani; Mike Stower; Hannah F. Walker; Julie E. Burns; Anne T. Collins; Norman J. Maitland

To investigate hierarchy in human prostate epithelial cells, we generated recombinant lentiviruses, infected primary cultures and cell lines, and followed their fate in vitro. The lentiviruses combined constitutive promoters including CMV and β-actin, or late-stage differentiation promoters including PSCA (prostate stem cell antigen) and PSAPb (prostate specific antigen/probasin) driving expression of monomeric, dimeric and tetrameric fluorescent proteins. Significantly, rare CD133(+) cells from primary prostate epithelial cultures were successfully infected and activation of late-stage promoters was observed in basal epithelial cultures following induction of differentiation. Lentiviruses also infected CD133(+) cells within the P4E6 cell line. However, promoter silencing was observed in several cell lines (P4E6, BPH-1, PC3). We examined the promoter methylation status of the lentiviral insertions in heterogeneously fluorescent cultures from PC3 clones and found that DNA methylation was not the primary mechanism of silencing of the CMV promoter. We also describe limitations to the lentivirus system including technical challenges due to low titers and low infection efficiency in primary cultures. However, we have identified a functional late-stage promoter that indicates differentiation from a basal to a luminal phenotype and demonstrate that this strategy for lineage tracking of prostate epithelial cells is valid with further optimisation.


Cell Death & Differentiation | 2014

DNA hypermethylation in prostate cancer is a consequence of aberrant epithelial differentiation and hyperproliferation

Davide Pellacani; Dimitra Kestoras; Alastair Droop; Fiona M. Frame; Pa Berry; Mitchell G. Lawrence; Michael J. Stower; Matthew S. Simms; Vincent M. Mann; Anne T. Collins; Gail P. Risbridger; Norman J. Maitland

Prostate cancer (CaP) is mostly composed of luminal-like differentiated cells, but contains a small subpopulation of basal cells (including stem-like cells), which can proliferate and differentiate into luminal-like cells. In cancers, CpG island hypermethylation has been associated with gene downregulation, but the causal relationship between the two phenomena is still debated. Here we clarify the origin and function of CpG island hypermethylation in CaP, in the context of a cancer cell hierarchy and epithelial differentiation, by analysis of separated basal and luminal cells from cancers. For a set of genes (including GSTP1) that are hypermethylated in CaP, gene downregulation is the result of cell differentiation and is not cancer specific. Hypermethylation is however seen in more differentiated cancer cells and is promoted by hyperproliferation. These genes are maintained as actively expressed and methylation-free in undifferentiated CaP cells, and their hypermethylation is not essential for either tumour development or expansion. We present evidence for the causes and the dynamics of CpG island hypermethylation in CaP, showing that, for a specific set of genes, promoter methylation is downstream of gene downregulation and is not a driver of gene repression, while gene repression is a result of tissue-specific differentiation.

Collaboration


Dive into the Fiona M. Frame's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge