Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Johannes Pihl is active.

Publication


Featured researches published by Michael Johannes Pihl.


IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2013

SARUS: A synthetic aperture real-time ultrasound system

Jørgen Arendt Jensen; Hans Erik Holten-Lund; Ronnie Thorup Nilsson; Martin Otto Laver Hansen; Ulrik Darling Larsen; Rune Petter Domsten; Borislav Gueorguiev Tomov; Matthias Bo Stuart; Svetoslav Ivanov Nikolov; Michael Johannes Pihl; Yigang Du; Joachim Rasmussen; Morten Rasmussen

The Synthetic Aperture Real-time Ultrasound System (SARUS) for acquiring and processing synthetic aperture (SA) data for research purposes is described. The specifications and design of the system are detailed, along with its performance for SA, nonlinear, and 3-D flow estimation imaging. SARUS acquires individual channel data simultaneously for up to 1024 transducer elements for a couple of heart beats, and is capable of transmitting any kind of excitation. The 64 boards in the system house 16 transmit and 16 receive channels each, where sampled channel data can be stored in 2 GB of RAM and processed using five field-programmable gate arrays (FPGAs). The fully parametric focusing unit calculates delays and apodization values in real time in 3-D space and can produce 350 million complex samples per channel per second for full non-recursive synthetic aperture B-mode imaging at roughly 30 high-resolution images/s. Both RF element data and beamformed data can be stored in the system for later storage and processing. The stored data can be transferred in parallel using the systems sixty-four 1-Gbit Ethernet interfaces at a theoretical rate of 3.2 GB/s to a 144-core Linux cluster.


Ultrasound in Medicine and Biology | 2012

Comparison of Real-Time In Vivo Spectral and Vector Velocity Estimation

Mads Møller Pedersen; Michael Johannes Pihl; Per Haugaard; Jens Hansen; Kristoffer Lindskov Hansen; Michael Bachmann Nielsen; Jørgen Arendt Jensen

The purpose of this study is to show whether a newly introduced vector flow method is equal to conventional spectral estimation. Thirty-two common carotid arteries of 16 healthy volunteers were scanned using a BK Medical ProFocus scanner (DK-2730, Herlev, Denmark) and a linear transducer at 5 MHz. A triplex imaging sequence yields both the conventional velocity spectrum and a two-dimensional vector velocity image. Several clinical parameters were estimated and compared for the two methods: Flow angle, peak systole velocity (PS), end diastole velocity (ED) and resistive index (RI). With a paired t-test, the spectral and vector angles did not differ significantly (p = 0.658), whereas PS (p = 0.034), ED (p = 0.004) and RI (p < 0.0001) differed significantly. Vector flow can measure the angle for spectral angle correction, thus eliminating the bias from the radiologist performing the angle setting with spectral estimation. The flow angle limitation in velocity estimation is also eliminated, so that flow at any angle can be measured.


IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2012

Implementation of a versatile research data acquisition system using a commercially available medical ultrasound scanner

Martin Christian Hemmsen; Svetoslav Ivanov Nikolov; Mads Møller Pedersen; Michael Johannes Pihl; Marie Sand Enevoldsen; Jens Hansen; Jørgen Arendt Jensen

This paper describes the design and implementation of a versatile, open-architecture research data acquisition system using a commercially available medical ultrasound scanner. The open architecture will allow researchers and clinicians to rapidly develop applications and move them relatively easy to the clinic. The system consists of a standard PC equipped with a camera link and an ultrasound scanner equipped with a research interface. The ultrasound scanner is an easy-to-use imaging device that is capable of generating high-quality images. In addition to supporting the acquisition of multiple data types, such as B-mode, M-mode, pulsed Doppler, and color flow imaging, the machine provides users with full control over imaging parameters such as transmit level, excitation waveform, beam angle, and focal depth. Beamformed RF data can be acquired from regions of interest throughout the image plane and stored to a file with a simple button press. For clinical trials and investigational purposes, when an identical image plane is desired for both an experimental and a reference data set, interleaved data can be captured. This form of data acquisition allows switching between multiple setups while maintaining identical transducer, scanner, region of interest, and recording time. Data acquisition is controlled through a graphical user interface running on the PC. This program implements an interface for third-party software to interact with the application. A software development toolkit is developed to give researchers and clinicians the ability to utilize third-party software for data analysis and flexible manipulation of control parameters. Because of the advantages of speed of acquisition and clinical benefit, research projects have successfully used the system to test and implement their customized solutions for different applications. Three examples of system use are presented in this paper: evaluation of synthetic aperture sequential beamformation, transverse oscillation for blood velocity estimation, and acquisition of spectral velocity data for evaluating aortic aneurysms.


IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2012

Phased-array vector velocity estimation using transverse oscillations

Michael Johannes Pihl; Jonne Marcher; Jørgen Arendt Jensen

A method for estimating the 2-D vector velocity of blood using a phased-array transducer is presented. The approach is based on the transverse oscillation (TO) method. The purposes of this work are to expand the TO method to a phased-array geometry and to broaden the potential clinical applicability of the method. A phased-array transducer has a smaller footprint and a larger field of view than a linear array, and is therefore more suited for, e.g., cardiac imaging. The method relies on suitable TO fields, and a beamforming strategy employing diverging TO beams is proposed. The implementation of the TO method using a phased-array transducer for vector velocity estimation is evaluated through simulation and flow-rig measurements are acquired using an experimental scanner. The vast number of calculations needed to perform flow simulations makes the optimization of the TO fields a cumbersome process. Therefore, three performance metrics are proposed. They are calculated based on the complex TO spectrum of the combined TO fields. It is hypothesized that the performance metrics are related to the performance of the velocity estimates. The simulations show that the squared correlation values range from 0.79 to 0.92, indicating a correlation between the performance metrics of the TO spectrum and the velocity estimates. Because these performance metrics are much more readily computed, the TO fields can be optimized faster for improved velocity estimation of both simulations and measurements. For simulations of a parabolic flow at a depth of 10 cm, a relative (to the peak velocity) bias and standard deviation of 4% and 8%, respectively, are obtained. Overall, the simulations show that the TO method implemented on a phased-array transducer is robust with relative standard deviations around 10% in most cases. The flow-rig measurements show similar results. At a depth of 9.5 cm using 32 emissions per estimate, the relative standard deviation is 9% and the relative bias is -9%. At the center of the vessel, the velocity magnitude is estimated to be 0.25 ± 0.023 m/s, compared with an expected peak velocity magnitude of 0.25 m/s, and the beam-to-flow angle is calculated to be 89.3° ± 0.77°, compared with an expected angle value between 89° and 90°. For steering angles up to ±20° degrees, the relative standard deviation is less than 20%. The results also show that a 64-element transducer implementation is feasible, but with a poorer performance compared with a 128-element transducer. The simulation and experimental results demonstrate that the TO method is suitable for use in conjunction with a phased-array transducer, and that 2-D vector velocity estimation is possible down to a depth of 15 cm.


IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2014

A Transverse Oscillation Approach for Estimation of Three-Dimensional Velocity Vectors, Part I: Concept and Simulation Study

Michael Johannes Pihl; Jørgen Arendt Jensen

A method for 3-D velocity vector estimation using transverse oscillations is presented. The method employs a 2-D transducer and decouples the velocity estimation into three orthogonal components, which are estimated simultaneously and from the same data. The validity of the method is investigated by conducting simulations emulating a 32 × 32 matrix transducer. The results are evaluated using two performance metrics related to precision and accuracy. The study includes several parameters including 49 flow directions, the SNR, steering angle, and apodization types. The 49 flow directions cover the positive octant of the unit sphere. In terms of accuracy, the median bias is -2%. The precision of vx and vy depends on the flow angle β and ranges from 5% to 31% relative to the peak velocity magnitude of 1 m/s. For comparison, the range is 0.4 to 2% for vz. The parameter study also reveals, that the velocity estimation breaks down with an SNR between -6 and -3 dB. In terms of computational load, the estimation of the three velocity components requires 0.75 billion floating point operations per second (0.75 Gflops) for a realistic setup. This is well within the capability of modern scanners.


Ultrasound in Medicine and Biology | 2014

Volume Flow in Arteriovenous Fistulas Using Vector Velocity Ultrasound

Peter Møller Hansen; Jacob Bjerring Olesen; Michael Johannes Pihl; Theis Lange; Søren T. Heerwagen; Mads Møller Pedersen; Marianne Rix; Lars Lönn; Jørgen Arendt Jensen; Michael Bachmann Nielsen

Volume flow in arteriovenous fistulas for hemodialysis was measured using the angle-independent ultrasound technique Vector Flow Imaging and compared with flow measurements using the ultrasound dilution technique during dialysis. Using an UltraView 800 ultrasound scanner (BK Medical, Herlev, Denmark) with a linear transducer, 20 arteriovenous fistulas were scanned directly on the most superficial part of the fistula just before dialysis. Vector Flow Imaging volume flow was estimated with two different approaches, using the maximum and the average flow velocities detected in the fistula. Flow was estimated to be 242 mL/min and 404 mL/min lower than the ultrasound dilution technique estimate, depending on the approach. The standard deviations of the two Vector Flow Imaging approaches were 175.9 mL/min and 164.8 mL/min compared with a standard deviation of 136.9 mL/min using the ultrasound dilution technique. The study supports that Vector Flow Imaging is applicable for volume flow measurements.


IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2014

A transverse oscillation approach for estimation of three-dimensional velocity vectors, Part II: experimental validation

Michael Johannes Pihl; Matthias Bo Stuart; Borislav Gueorguiev Tomov; Morten Fischer Rasmussen; Jørgen Arendt Jensen

The 3-D transverse oscillation method is investigated by estimating 3-D velocities in an experimental flow-rig system. Measurements of the synthesized transverse oscillating fields are presented as well. The method employs a 2-D transducer; decouples the velocity estimation; and estimates the axial, transverse, and elevation velocity components simultaneously. Data are acquired using a research ultrasound scanner. The velocity measurements are conducted with steady flow in sixteen different directions. For a specific flow direction with [α, β] = [45, 15]°, the mean estimated velocity vector at the center of the vessel is (v<sub>x</sub>, v<sub>y</sub>, v<sub>z</sub>) = (33.8, 34.5, 15.2) ± (4.6, 5.0, 0.6) cm/s where the expected velocity is (34.2, 34.2, 13.0) cm/s. The velocity magnitude is 50.6 ± 5.2 cm/s with a bias of 0.7 cm/s. The flow angles α and β are estimated as 45.6 ± 4.9° and 17.6 ± 1.0°. Subsequently, the precision and accuracy are calculated over the entire velocity profiles. On average for all direction, the relative mean bias of the velocity magnitude is -0.08%. For α and β, the mean bias is -0.2° and -1.5°. The relative standard deviations of the velocity magnitude ranges from 8 to 16%. For the flow angles, the ranges of the mean angular deviations are 5° to 16° and 0.7° and 8°.


Ultrasound in Medicine and Biology | 2014

Novel Flow Quantification of the Carotid Bulb and the Common Carotid Artery with Vector Flow Ultrasound

Mads Møller Pedersen; Michael Johannes Pihl; Per Haugaard; Kristoffer Lindskov Hansen; Theis Lange; Lars Lönn; Michael Bachmann Nielsen; Jørgen Arendt Jensen

Abnormal blood flow is usually assessed using spectral Doppler estimation of the peak systolic velocity. The technique, however, only estimates the axial velocity component, and therefore the complexity of blood flow remains hidden in conventional ultrasound examinations. With the vector ultrasound technique transverse oscillation the blood velocities of both the axial and the transverse directions are obtained and the complexity of blood flow can be visualized. The aim of the study was to determine the technical performance and interpretation of vector concentration as a tool for estimation of flow complexity. A secondary aim was to establish accuracy parameters to detect flow changes/patterns in the common carotid artery (CCA) and the carotid bulb (CB). The right carotid bifurcation including the CCA and CB of eight healthy volunteers were scanned in a longitudinal plane with vector flow ultrasound (US) using a commercial vector flow ultrasound scanner (ProFocus, BK Medical, Denmark) with a linear 5 MHz transducer transverse oscillation vector flow software. CCA and CB areas were marked in one cardiac cycle from each volunteer. The complex flow was assessed by medical expert evaluation and by vector concentration calculation. A vortex with complex flow was found in all carotid bulbs, whereas the CCA had mainly laminar flow. The medical experts evaluated the flow to be mainly laminar in the CCA (0.82 ± 0.14) and mainly complex (0.23 ± 0.22) in the CB. Likewise, the estimated vector concentrations in CCA (0.96 ± 0.16) indicated mainly laminar flow and in CB (0.83 ± 0.07) indicated mainly turbulence. Both methods were thus able to clearly distinguish the flow patterns of CCA and CB in systole. Vector concentration from angle-independent vector velocity estimates is a quantitative index, which is simple to calculate and can differentiate between laminar and complex flow.


internaltional ultrasonics symposium | 2012

Measuring 3D velocity vectors using the Transverse Oscillation method

Michael Johannes Pihl; Jørgen Arendt Jensen

Experimentally obtained estimates of three-dimensional (3D) velocity vectors using the 3D Transverse Oscillation (TO) method are presented. The method employs a 2D transducer and synthesizes two double-oscillating fields in receive to obtain the axial, transverse, and elevation velocity components simultaneously. Experimental data are acquired using the ultrasound research scanner SARUS. The double-oscillating TO fields are investigated in an experimental scanning tank setup. The results demonstrate that the created fields only oscillate in the axial plus either the transverse or the elevation direction. Velocity measurements are conducted in an experimental flow-rig with steady flow in two different directions (mainly in x or y direction). Velocity estimates are obtained along the z axis. All three velocity components (vx, v,, vz) are measured with relative biases and standard deviations (normalized to expected value) below 5% and 12%, respectively. For an expected velocity magnitude of 25.2 cm/s, the method estimates 24.4±3.1 cm/s and 25.1±1.9 cm/s for the two directions. Under similar conditions, Field II simulations yield 25.1±1.5 cm/s and 25.4±1.6 cm/s. The experimental results validate the results obtained through simulations and verify that the 3D TO method estimates the full 3D velocity vectors simultaneously as well as the correct velocity magnitudes.


IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2016

Safety Assessment of Advanced Imaging Sequences I: Measurements

Jørgen Arendt Jensen; Morten Fischer Rasmussen; Michael Johannes Pihl; Simon Holbek; Carlos Armando Villagómez Hoyos; David Bradway; Matthias Bo Stuart; Borislav Gueorguiev Tomov

A method for rapid measurement of intensities (Ispta), mechanical index (MI), and probe surface temperature for any ultrasound scanning sequence is presented. It uses the scanners sampling capability to give an accurate measurement of the whole imaging sequence for all emissions to yield the true distributions. The method is several orders of magnitude faster than approaches using an oscilloscope, and it also facilitates validating the emitted pressure field and the scanners emission sequence software. It has been implemented using the experimental synthetic aperture real-time ultrasound system (SARUS) scanner and the Onda AIMS III intensity measurement system (Onda Corporation, Sunnyvale, CA, USA). Four different sequences have been measured: a fixed focus emission, a duplex sequence containing B-mode and flow emissions, a vector flow sequence with B-mode and flow emissions in 17 directions, and finally a SA duplex flow sequence. A BK8820e (BK Medical, Herlev, Denmark) convex array probe is used for the first three sequences and a BK8670 linear array probe for the SA sequence. The method is shown to give the same intensity values within 0.24% of the AIMS III Soniq 5.0 (Onda Corporation, Sunnyvale, CA, USA) commercial intensity measurement program. The approach can measure and store data for a full imaging sequence in 3.8-8.2 s per spatial position. Based on Ispta, MI, and probe surface temperature, the method gives the ability to determine whether a sequence is within U.S. FDA limits, or alternatively indicate how to scale it to be within limits.

Collaboration


Dive into the Michael Johannes Pihl's collaboration.

Top Co-Authors

Avatar

Jørgen Arendt Jensen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mads Møller Pedersen

Copenhagen University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthias Bo Stuart

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Jacob Bjerring Olesen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Svetoslav Ivanov Nikolov

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Peter Møller Hansen

Copenhagen University Hospital

View shared research outputs
Top Co-Authors

Avatar

Jens Hansen

Université de Montréal

View shared research outputs
Researchain Logo
Decentralizing Knowledge