Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Kacik is active.

Publication


Featured researches published by Michael Kacik.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2006

Evidence for a Functional Role of Endothelial Transient Receptor Potential V4 in Shear Stress–Induced Vasodilatation

Ralf Köhler; Willm-Thomas Heyken; Philipp Heinau; Rudolf Schubert; Han Si; Michael Kacik; Christoph Busch; Ivica Grgic; Tanja Maier; Joachim Hoyer

Objective—Ca2+-influx through transient receptor potential (TRP) channels was proposed to be important in endothelial function, although the precise role of specific TRP channels is unknown. Here, we investigated the role of the putatively mechanosensitive TRPV4 channel in the mechanisms of endothelium-dependent vasodilatation. Methods and Results—Expression and function of TRPV4 was investigated in rat carotid artery endothelial cells (RCAECs) by using in situ patch-clamp techniques, single-cell RT-PCR, Ca2+ measurements, and pressure myography in carotid artery (CA) and Arteria gracilis. In RCAECs in situ, TRPV4 currents were activated by the selective TRPV4 opener 4&agr;-phorbol-12,13-didecanoate (4&agr;PDD), arachidonic acid, moderate warmth, and mechanically by hypotonic cell swelling. Single-cell RT-PCR in endothelial cells demonstrated mRNA expression of TRPV4. In FURA-2 Ca2+ measurements, 4&agr;PDD increased [Ca2+]i by ≈140 nmol/L above basal levels. In pressure myograph experiments in CAs and A gracilis, 4&agr;PDD caused robust endothelium-dependent and strictly endothelium-dependent vasodilatations by ≈80% (KD 0.3 &mgr;mol/L), which were suppressed by the TRPV4 blocker ruthenium red (RuR). Shear stress–induced vasodilatation was similarly blocked by RuR and also by the phospholipase A2 inhibitor arachidonyl trifluoromethyl ketone (AACOCF3). 4&agr;PDD produced endothelium-derived hyperpolarizing factor (EDHF)–type responses in A gracilis but not in rat carotid artery. Shear stress did not produce EDHF-type vasodilatation in either vessel type. Conclusions—Ca2+ entry through endothelial TRPV4 channels triggers NO- and EDHF-dependent vasodilatation. Moreover, TRPV4 appears to be mechanistically important in endothelial mechanosensing of shear stress.


Circulation | 2009

Genetic deficit of SK3 and IK1 channels disrupts the endothelium-derived hyperpolarizing factor vasodilator pathway and causes hypertension.

Sebastian Brahler; Anuradha Kaistha; Volker J. Schmidt; Stephanie E. Wölfle; Christoph Busch; Brajesh P. Kaistha; Michael Kacik; Anna Lena Hasenau; Ivica Grgic; Han Si; Chris T. Bond; John P. Adelman; Heike Wulff; Cor de Wit; Joachim Hoyer; Ralf Köhler

Background— It has been proposed that activation of endothelial SK3 (KCa2.3) and IK1 (KCa3.1) K+ channels plays a role in the arteriolar dilation attributed to an endothelium-derived hyperpolarizing factor (EDHF). However, our understanding of the precise function of SK3 and IK1 in the EDHF dilator response and in blood pressure control remains incomplete. To clarify the roles of SK3 and IK1 channels in the EDHF dilator response and their contribution to blood pressure control in vivo, we generated mice deficient for both channels. Methods and Results— Expression and function of endothelial SK3 and IK1 in IK1−/−/SK3T/T mice was characterized by patch-clamp, membrane potential measurements, pressure myography, and intravital microscopy. Blood pressure was measured in conscious mice by telemetry. Combined IK1/SK3 deficiency in IK1−/−/SK3T/T (+doxycycline) mice abolished endothelial KCa currents and impaired acetylcholine-induced smooth muscle hyperpolarization and EDHF-mediated dilation in conduit arteries and in resistance arterioles in vivo. IK1 deficiency had a severe impact on acetylcholine-induced EDHF-mediated vasodilation, whereas SK3 deficiency impaired NO-mediated dilation to acetylcholine and to shear stress stimulation. As a consequence, SK3/IK1-deficient mice exhibited an elevated arterial blood pressure, which was most prominent during physical activity. Overexpression of SK3 in IK1−/−/SK3T/T mice partially restored EDHF- and nitric oxide–mediated vasodilation and lowered elevated blood pressure. The IK1-opener SKA-31 enhanced EDHF-mediated vasodilation and lowered blood pressure in SK3-deficient IK1+/+/SK3T/T (+doxycycline) mice to normotensive levels. Conclusions— Our study demonstrates that endothelial SK3 and IK1 channels have distinct stimulus-dependent functions, are major players in the EDHF pathway, and significantly contribute to arterial blood pressure regulation. Endothelial KCa channels may represent novel therapeutic targets for the treatment of hypertension.


Circulation | 2012

Cytochrome P450 Subfamily 2J Polypeptide 2 Expression and Circulating Epoxyeicosatrienoic Metabolites in Preeclampsia

Florian Herse; Babbette LaMarca; Carl A. Hubel; Tea Kaartokallio; A. Inkeri Lokki; Eeva Ekholm; Hannele Laivuori; Martin Gauster; Berthold Huppertz; Meryam Sugulle; Michael J. Ryan; Sarah Novotny; Justin Brewer; Joon-Keun Park; Michael Kacik; Joachim Hoyer; Stefan Verlohren; Gerd Wallukat; Michael Rothe; Friedrich C. Luft; Dominik Müller; Wolf-Hagen Schunck; Anne Cathrine Staff; Ralf Dechend

Background —Preeclampsia is a multisystem disorder of pregnancy, originating in the placenta. Cytochrome P450 (CYP)-dependent eicosanoids regulate vascular function, inflammation, and angiogenesis that are mechanistically important in preeclampsia. Methods and Results —We performed microarray screening of placenta and decidua (maternal placenta) from 25 preeclamptic women and 23 controls. The CYP subfamily 2J polypeptide 2 (CYP2J2) was upregulated in preeclamptic placenta and decidua. RT-PCR confirmed the upregulation and immunohistochemistry localized CYP2J2 in trophoblastic villi and deciduas at 12 weeks and term. The CYP2J2 metabolites, 5,6-epoxyeicosatrienoic acids (EET), 14,15-EET, and the corresponding dihydroxyeicosatrienoic acids (DHET), were elevated in preeclamptic women compared to controls in the latter two-thirds of pregnancy and after delivery. Stimulating a trophoblast-derived cell line with the preeclampsia-associated cytokine, tumor necrosis factor-α enhanced CYP2J2 gene and protein expression. In two independent rat models of preeclampsia, reduced uterine-perfusion rat and the transgenic Ang II rat, we observed elevated EET, DHET, and preeclamptic features that were ameliorated by the CYP epoxygenase inhibitor, MsPPOH. Uterine arterial rings of these rats also dilated in response to MsPPOH. Furthermore, 5,6-EET could be metabolized to a thromboxane analog. In a bioassay, 5,6-EET increased the beating rate of neonatal cardiomyocytes. Blocking thromboxane synthesis reversed that finding and also normalized large-conductance calcium-activated potassium channel (KCa1.1) activity. Conclusions —Our data implicate CYP2J2 in the pathogenesis of preeclampsia and as a potential candidate for the disturbed uteroplacental remodeling, leading to hypertension and endothelial dysfunction.Background— Preeclampsia is a multisystem disorder of pregnancy, originating in the placenta. Cytochrome P450 (CYP)-dependent eicosanoids regulate vascular function, inflammation, and angiogenesis, which are mechanistically important in preeclampsia. Methods and Results— We performed microarray screening of placenta and decidua (maternal placenta) from 25 preeclamptic women and 23 control subjects. The CYP subfamily 2J polypeptide 2 (CYP2J2) was upregulated in preeclamptic placenta and decidua. Reverse-transcription polymerase chain reaction confirmed the upregulation, and immunohistochemistry localized CYP2J2 in trophoblastic villi and deciduas at 12 weeks and term. The CYP2J2 metabolites, 5,6-epoxyeicosatrienoic acid (EET), 14,15-EET, and the corresponding dihydroxyeicosatrienoic acids, were elevated in preeclamptic women compared with controls in the latter two thirds of pregnancy and after delivery. Stimulating a trophoblast-derived cell line with the preeclampsia-associated cytokine tumor necrosis factor-&agr; enhanced CYP2J2 gene and protein expression. In 2 independent rat models of preeclampsia, reduced uterine-perfusion rat and the transgenic angiotensin II rat, we observed elevated EET, dihydroxyeicosatrienoic acid, and preeclamptic features that were ameliorated by the CYP epoxygenase inhibitor N-(methylsulfonyl)-2-(2-propynyloxy)-benzenehexanamide (MsPPOH). Uterine arterial rings of these rats also dilated in response to MsPPOH. Furthermore, 5,6-EET could be metabolized to a thromboxane analog. In a bioassay, 5,6-EET increased the beating rate of neonatal cardiomyocytes. Blocking thromboxane synthesis reversed that finding and also normalized large-conductance calcium-activated potassium channel activity. Conclusions— Our data implicate CYP2J2 in the pathogenesis of preeclampsia and as a potential candidate for the disturbed uteroplacental remodeling, leading to hypertension and endothelial dysfunction.


European Journal of Cell Biology | 2015

Evidence for functional and dynamic microcompartmentation of Cav-1/TRPV4/KCa in caveolae of endothelial cells

Sybelle Goedicke-Fritz; Anuradha Kaistha; Michael Kacik; Sabrina Markert; Andreas Hofmeister; Christoph Busch; Sebastian Bänfer; Ralf Jacob; Ivica Grgic; Joachim Hoyer

Ca(2+)-activated K(+) channels (KCa) play a pivotal role in the endothelium-dependent hyperpolarization and regulation of vascular tone and blood pressure. For activation, KCa depend on an increase of intracellular calcium which is substantially mediated by Ca(2+)-permeable cation channels including the transient receptor potential V4 (TRPV4). It has been proposed that KCa and Ca(2+)-permeable cation channels may be clustered in localized positions within the cell membrane to form functional units and that caveolae may constitute the scaffolding for such microcompartmental organization. Here, we sought to elucidate the composition and functional relevance of these microcompartments in vitro and in vivo. We show that TRPV4 and small-conductance KCa2.3 are enriched in caveolae of human microvascular endothelial cells. Using immunoprecipitation, immunocytology and superresolution microscopy, we found a caveolae-dependent association between caveolin-1, TRPV4 and small conductance KCa2.3, but not intermediate conductance KCa3.1, in endothelial cells under static condition. Mechanical stimulation of cells via exposure to shear stress led to a partial de-novo colocalization of KCa3.1 with Cav-1 and TRPV4. In a mouse model of genetic Cav-1 deficiency, we found significantly reduced KCa-mediated currents as determined by patch-clamping in carotid artery endothelial cells (CAEC) from Cav-1(-/-) mice compared to wildtype. Functionally, Cav-1 deficiency was associated with impaired endothelium-derived hyperpolarizing factor (EDHF)-mediated vasodilation in response to shear stress and acetylcholine. In summary, our findings provide evidence for a dynamic microcompartmentation of TRPV4/KCa in caveolae of endothelial cells and highlight the importance of Cav-1 for endothelial KCa functions and flow-induced vasodilation.


PLOS ONE | 2014

Modulation of KCa3.1 Channels by Eicosanoids, Omega-3 Fatty Acids, and Molecular Determinants

Michael Kacik; Aida Oliván-Viguera; Ralf Köhler

Background Cytochrome P450- and ω-hydrolase products (epoxyeicosatrienoic acids (EETs), hydroxyeicosatetraeonic acid (20-HETE)), natural omega-3 fatty acids (ω3), and pentacyclic triterpenes have been proposed to contribute to a wide range of vaso-protective and anti-fibrotic/anti-cancer signaling pathways including the modula-tion of membrane ion channels. Here we studied the modulation of intermediate-conductance Ca2+/calmodulin-regulated K+ channels (KCa3.1) by EETs, 20-HETE, ω3, and pentacyclic triterpenes and the structural requirements of these fatty acids to exert channel blockade. Methodology/Principal Findings We studied modulation of cloned human hKCa3.1 and the mutant hKCa3.1V275A in HEK-293 cells, of rKCa3.1 in aortic endothelial cells, and of mKCa3.1 in 3T3-fibroblasts by inside-out and whole-cell patch-clamp experiments, respectively. In inside-out patches, Ca2+-activated hKCa3.1 were inhibited by the ω3, DHA and α-LA, and the ω6, AA, in the lower µmolar range and with similar potencies. 5,6-EET, 8,9-EET, 5,6-DiHETE, and saturated arachidic acid, had no appreciable effects. In contrast, 14,15-EET, its stable derivative, 14,15-EEZE, and 20-HETE produced channel inhibition. 11,12-EET displayed less inhibitory activity. The KCa3.1V275A mutant channel was insensitive to any of the blocking EETs. Non-blocking 5,6-EET antagonized the inhibition caused by AA and augmented cloned hKCa3.1 and rKCa3.1 whole-cell currents. Pentacyclic triterpenes did not modulate KCa3.1 currents. Conclusions/Significance Inhibition of KCa3.1 by EETs (14,15-EET), 20-HETE, and ω3 critically depended on the presence of electron double bonds and hydrophobicity within the 10 carbons preceding the carboxyl-head of the molecules. From the physiological perspective, metabolism of AA to non-blocking 5,6,- and 8,9-EET may cause AA-de-blockade and contribute to cellular signal transduction processes influenced by these fatty acids.


Cardiovascular Research | 2008

Retraction of: TWIK-related two-pore domain potassium channel TREK-1 in carotid endothelium of normotensive and hypertensive mice

Sebastian Pokojski; Christoph Busch; Ivica Grgic; Michael Kacik; Waleed Salman; Regina Preisig-Müller; Willm-Thomas Heyken; Jürgen Daut; Joachim Hoyer; Ralf Köhler

AIMS Potassium channels are essential elements of endothelial function. Recently, evidence emerged that the TWIK (tandem of P domains in a weak inwardly rectifying K+ channel)-related K+ channel (TREK-1) of the two-pore domain potassium channel gene family (K2P) may be involved in the regulation of vascular tone. However, the functional and molecular characterization of vascular TREK-1 is incomplete. In this study, we therefore analysed the functional expression of TREK-1 in the endothelium. Moreover, we hypothesized that changes in channel expression may contribute to altered endothelial vasodilator response under conditions of elevated blood pressure. METHODS AND RESULTS Gene expression and function of endothelial TREK-1 were analysed by single-cell RT-PCR, the patch-clamp technique and pressure myography in murine carotid arteries (CA). K+ outward currents displaying the characteristics of TREK-1 were observed following various TREK-1-activating stimuli such as membrane stretch, intracellular acidosis, polyunsaturated fatty acids, isoflurane (ISOFL), riluzole, and acetylcholine (ACh). In K(Ca)3.1(-/-) mice exhibiting elevated blood pressure, endothelial TREK-1 currents and TREK-1 mRNA expression were enhanced as compared with normotensive control mice. TREK-1-mediated vasodilator responses to alpha-linolenic acid, ISOFL, or ACh were increased. A similar up-regulation of endothelial TREK-1 was observed in spontaneously hypertensive rats. CONCLUSION We have found that TREK-1 is an endothelial K+ channel capable of producing hyperpolarization and vasodilation. A correlation between hypertension and up-regulation of TREK-1 was observed in two different animal models of elevated blood pressure. Thus, TREK-1 may play a protective role in the cardiovascular system by providing a novel type of endothelial hyperpolarization-mediated vasodilator response.


Circulation | 2012

CYP2J2 Expression and Circulating Epoxyeicosatrienoic Metabolites in Preeclampsia

Florian Herse; Babbette LaMarca; Carl A. Hubel; Tea Kaartokallio; A. Inkeri Lokki; Eeva Ekholm; Hannele Laivuori; Martin Gauster; Berthold Huppertz; Meryam Sugulle; Michael J Ryan; Sarah Novotny; Justin Brewer; Joon-Keun Park; Michael Kacik; Joachim Hoyer; Stefan Verlohren; Gerd Wallukat; Michael Rothe; Friedrich C. Luft; Dominik Müller; Wolf-Hagen Schunck; Anne Cathrine Staff; Ralf Dechend

Background —Preeclampsia is a multisystem disorder of pregnancy, originating in the placenta. Cytochrome P450 (CYP)-dependent eicosanoids regulate vascular function, inflammation, and angiogenesis that are mechanistically important in preeclampsia. Methods and Results —We performed microarray screening of placenta and decidua (maternal placenta) from 25 preeclamptic women and 23 controls. The CYP subfamily 2J polypeptide 2 (CYP2J2) was upregulated in preeclamptic placenta and decidua. RT-PCR confirmed the upregulation and immunohistochemistry localized CYP2J2 in trophoblastic villi and deciduas at 12 weeks and term. The CYP2J2 metabolites, 5,6-epoxyeicosatrienoic acids (EET), 14,15-EET, and the corresponding dihydroxyeicosatrienoic acids (DHET), were elevated in preeclamptic women compared to controls in the latter two-thirds of pregnancy and after delivery. Stimulating a trophoblast-derived cell line with the preeclampsia-associated cytokine, tumor necrosis factor-α enhanced CYP2J2 gene and protein expression. In two independent rat models of preeclampsia, reduced uterine-perfusion rat and the transgenic Ang II rat, we observed elevated EET, DHET, and preeclamptic features that were ameliorated by the CYP epoxygenase inhibitor, MsPPOH. Uterine arterial rings of these rats also dilated in response to MsPPOH. Furthermore, 5,6-EET could be metabolized to a thromboxane analog. In a bioassay, 5,6-EET increased the beating rate of neonatal cardiomyocytes. Blocking thromboxane synthesis reversed that finding and also normalized large-conductance calcium-activated potassium channel (KCa1.1) activity. Conclusions —Our data implicate CYP2J2 in the pathogenesis of preeclampsia and as a potential candidate for the disturbed uteroplacental remodeling, leading to hypertension and endothelial dysfunction.Background— Preeclampsia is a multisystem disorder of pregnancy, originating in the placenta. Cytochrome P450 (CYP)-dependent eicosanoids regulate vascular function, inflammation, and angiogenesis, which are mechanistically important in preeclampsia. Methods and Results— We performed microarray screening of placenta and decidua (maternal placenta) from 25 preeclamptic women and 23 control subjects. The CYP subfamily 2J polypeptide 2 (CYP2J2) was upregulated in preeclamptic placenta and decidua. Reverse-transcription polymerase chain reaction confirmed the upregulation, and immunohistochemistry localized CYP2J2 in trophoblastic villi and deciduas at 12 weeks and term. The CYP2J2 metabolites, 5,6-epoxyeicosatrienoic acid (EET), 14,15-EET, and the corresponding dihydroxyeicosatrienoic acids, were elevated in preeclamptic women compared with controls in the latter two thirds of pregnancy and after delivery. Stimulating a trophoblast-derived cell line with the preeclampsia-associated cytokine tumor necrosis factor-&agr; enhanced CYP2J2 gene and protein expression. In 2 independent rat models of preeclampsia, reduced uterine-perfusion rat and the transgenic angiotensin II rat, we observed elevated EET, dihydroxyeicosatrienoic acid, and preeclamptic features that were ameliorated by the CYP epoxygenase inhibitor N-(methylsulfonyl)-2-(2-propynyloxy)-benzenehexanamide (MsPPOH). Uterine arterial rings of these rats also dilated in response to MsPPOH. Furthermore, 5,6-EET could be metabolized to a thromboxane analog. In a bioassay, 5,6-EET increased the beating rate of neonatal cardiomyocytes. Blocking thromboxane synthesis reversed that finding and also normalized large-conductance calcium-activated potassium channel activity. Conclusions— Our data implicate CYP2J2 in the pathogenesis of preeclampsia and as a potential candidate for the disturbed uteroplacental remodeling, leading to hypertension and endothelial dysfunction.


Circulation | 2012

Cytochrome P450 Subfamily 2J Polypeptide 2 Expression and Circulating Epoxyeicosatrienoic Metabolites in PreeclampsiaClinical Perspective

Florian Herse; Babbette LaMarca; Carl A. Hubel; Tea Kaartokallio; A. Inkeri Lokki; Eeva Ekholm; Hannele Laivuori; Martin Gauster; Berthold Huppertz; Meryam Sugulle; Michael J. Ryan; Sarah Novotny; Justin Brewer; Joon-Keun Park; Michael Kacik; Joachim Hoyer; Stefan Verlohren; Gerd Wallukat; Michael Rothe; Friedrich C. Luft; Dominik Müller; Wolf-Hagen Schunck; Anne Cathrine Staff; Ralf Dechend

Background —Preeclampsia is a multisystem disorder of pregnancy, originating in the placenta. Cytochrome P450 (CYP)-dependent eicosanoids regulate vascular function, inflammation, and angiogenesis that are mechanistically important in preeclampsia. Methods and Results —We performed microarray screening of placenta and decidua (maternal placenta) from 25 preeclamptic women and 23 controls. The CYP subfamily 2J polypeptide 2 (CYP2J2) was upregulated in preeclamptic placenta and decidua. RT-PCR confirmed the upregulation and immunohistochemistry localized CYP2J2 in trophoblastic villi and deciduas at 12 weeks and term. The CYP2J2 metabolites, 5,6-epoxyeicosatrienoic acids (EET), 14,15-EET, and the corresponding dihydroxyeicosatrienoic acids (DHET), were elevated in preeclamptic women compared to controls in the latter two-thirds of pregnancy and after delivery. Stimulating a trophoblast-derived cell line with the preeclampsia-associated cytokine, tumor necrosis factor-α enhanced CYP2J2 gene and protein expression. In two independent rat models of preeclampsia, reduced uterine-perfusion rat and the transgenic Ang II rat, we observed elevated EET, DHET, and preeclamptic features that were ameliorated by the CYP epoxygenase inhibitor, MsPPOH. Uterine arterial rings of these rats also dilated in response to MsPPOH. Furthermore, 5,6-EET could be metabolized to a thromboxane analog. In a bioassay, 5,6-EET increased the beating rate of neonatal cardiomyocytes. Blocking thromboxane synthesis reversed that finding and also normalized large-conductance calcium-activated potassium channel (KCa1.1) activity. Conclusions —Our data implicate CYP2J2 in the pathogenesis of preeclampsia and as a potential candidate for the disturbed uteroplacental remodeling, leading to hypertension and endothelial dysfunction.Background— Preeclampsia is a multisystem disorder of pregnancy, originating in the placenta. Cytochrome P450 (CYP)-dependent eicosanoids regulate vascular function, inflammation, and angiogenesis, which are mechanistically important in preeclampsia. Methods and Results— We performed microarray screening of placenta and decidua (maternal placenta) from 25 preeclamptic women and 23 control subjects. The CYP subfamily 2J polypeptide 2 (CYP2J2) was upregulated in preeclamptic placenta and decidua. Reverse-transcription polymerase chain reaction confirmed the upregulation, and immunohistochemistry localized CYP2J2 in trophoblastic villi and deciduas at 12 weeks and term. The CYP2J2 metabolites, 5,6-epoxyeicosatrienoic acid (EET), 14,15-EET, and the corresponding dihydroxyeicosatrienoic acids, were elevated in preeclamptic women compared with controls in the latter two thirds of pregnancy and after delivery. Stimulating a trophoblast-derived cell line with the preeclampsia-associated cytokine tumor necrosis factor-&agr; enhanced CYP2J2 gene and protein expression. In 2 independent rat models of preeclampsia, reduced uterine-perfusion rat and the transgenic angiotensin II rat, we observed elevated EET, dihydroxyeicosatrienoic acid, and preeclamptic features that were ameliorated by the CYP epoxygenase inhibitor N-(methylsulfonyl)-2-(2-propynyloxy)-benzenehexanamide (MsPPOH). Uterine arterial rings of these rats also dilated in response to MsPPOH. Furthermore, 5,6-EET could be metabolized to a thromboxane analog. In a bioassay, 5,6-EET increased the beating rate of neonatal cardiomyocytes. Blocking thromboxane synthesis reversed that finding and also normalized large-conductance calcium-activated potassium channel activity. Conclusions— Our data implicate CYP2J2 in the pathogenesis of preeclampsia and as a potential candidate for the disturbed uteroplacental remodeling, leading to hypertension and endothelial dysfunction.


PLOS ONE | 2007

Arterial Response to Shear Stress Critically Depends on Endothelial TRPV4 Expression

Veronika Hartmannsgruber; Willm-Thomas Heyken; Michael Kacik; Anuradha Kaistha; Ivica Grgic; Christian Harteneck; Wolfgang Liedtke; Joachim Hoyer; Ralf Köhler


The FASEB Journal | 2010

Functional and molecular characterization of vascular TREK-1 channel and its role in EDHF-mediated vasodilation and hypertension

Brajesh P. Kaistha; Christoph Busch; Anuradha Kaistha; Michael Kacik; Ralf Köhler; Joachim Hoyer

Collaboration


Dive into the Michael Kacik's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ralf Köhler

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Florian Herse

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar

Friedrich C. Luft

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar

Gerd Wallukat

Max Delbrück Center for Molecular Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge