Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Kyba is active.

Publication


Featured researches published by Michael Kyba.


Science | 2008

White Fat Progenitor Cells Reside in the Adipose Vasculature

Wei Tang; Daniel Zeve; Jae Myoung Suh; Darko Bosnakovski; Michael Kyba; Robert E. Hammer; Michelle D. Tallquist; Jonathan M. Graff

White adipose (fat) tissues regulate metabolism, reproduction, and life span. Adipocytes form throughout life, with the most marked expansion of the lineage occurring during the postnatal period. Adipocytes develop in coordination with the vasculature, but the identity and location of white adipocyte progenitor cells in vivo are unknown. We used genetically marked mice to isolate proliferating and renewing adipogenic progenitors. We found that most adipocytes descend from a pool of these proliferating progenitors that are already committed, either prenatally or early in postnatal life. These progenitors reside in the mural cell compartment of the adipose vasculature, but not in the vasculature of other tissues. Thus, the adipose vasculature appears to function as a progenitor niche and may provide signals for adipocyte development.


Cell | 2002

HoxB4 confers definitive lymphoid-myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors.

Michael Kyba; Rita C.R. Perlingeiro; George Q. Daley

The extent to which primitive embryonic blood progenitors contribute to definitive lymphoid-myeloid hematopoiesis in the adult remains uncertain. In an effort to characterize factors that distinguish the definitive adult hematopoietic stem cell (HSC) and primitive progenitors derived from yolk sac or embryonic stem (ES) cells, we examined the effect of ectopic expression of HoxB4, a homeotic selector gene implicated in self-renewal of definitive HSCs. Expression of HoxB4 in primitive progenitors combined with culture on hematopoietic stroma induces a switch to the definitive HSC phenotype. These progenitors engraft lethally irradiated adults and contribute to long-term, multilineage hematopoiesis in primary and secondary recipients. Our results suggest that primitive HSCs are poised to become definitive HSCs and that this transition can be promoted by HoxB4 expression. This strategy for blood engraftment enables modeling of hematopoietic transplantation from ES cells.


Cell | 2002

Correction of a Genetic Defect by Nuclear Transplantation and Combined Cell and Gene Therapy

William Rideout; Michael Kyba; George Q. Daley; Rudolf Jaenisch

Immune-deficient Rag2(-/-) mice were used as nuclear donors for transfer into enucleated oocytes, and the resulting blastocysts were cultured to isolate an isogenic embryonic stem cell line. One of the mutated alleles in the Rag2(-/-) ES cells was repaired by homologous recombination, thereby restoring normal Rag2 gene structure. Mutant mice were treated with the repaired ES cells in two ways. (1) Immune-competent mice were generated from the repaired ES cells by tetraploid embryo complementation and were used as bone marrow donors for transplantation. (2) Hematopoietic precursors were derived by in vitro differentiation from the repaired ES cells and engrafted into mutant mice. Mature myeloid and lymphoid cells as well as immunoglobulins became detectable 3-4 weeks after transplantation. Our results establish a paradigm for the treatment of a genetic disorder by combining therapeutic cloning with gene therapy.


Nature Cell Biology | 2012

The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r.

Andrew Keniry; David Oxley; Paul Monnier; Michael Kyba; Luisa Dandolo; Guillaume Smits; Wolf Reik

The H19 large intergenic non-coding RNA (lincRNA) is one of the most highly abundant and conserved transcripts in mammalian development, being expressed in both embryonic and extra-embryonic cell lineages, yet its physiological function is unknown. Here we show that miR-675, a microRNA (miRNA) embedded in H19’s first exon, is expressed exclusively in the placenta from the gestational time point when placental growth normally ceases, and placentas that lack H19 continue to grow. Overexpression of miR-675 in a range of embryonic and extra-embryonic cell lines results in their reduced proliferation; targets of the miRNA are upregulated in the H19 null placenta, including the growth-promoting insulin-like growth factor 1 receptor (Igf1r) gene. Moreover, the excision of miR-675 from H19 is dynamically regulated by the stress-response RNA-binding protein HuR. These results suggest that H19’s main physiological role is in limiting growth of the placenta before birth, by regulated processing of miR-675. The controlled release of miR-675 from H19 may also allow rapid inhibition of cell proliferation in response to cellular stress or oncogenic signals.


Cell Stem Cell | 2008

Mesp1 Acts as a Master Regulator of Multipotent Cardiovascular Progenitor Specification

Antoine Bondue; Gaëlle Lapouge; Catherine Paulissen; Claudio Semeraro; Michelina Iacovino; Michael Kyba; Cédric Blanpain

During embryonic development, multipotent cardiovascular progenitor cells are specified from early mesoderm. Using mouse ESCs in which gene expression can be temporally regulated, we have found that transient expression of Mesp1 dramatically accelerates and enhances multipotent cardiovascular progenitor specification through an intrinsic and cell autonomous mechanism. Genome-wide transcriptional analysis indicates that Mesp1 rapidly activates and represses a discrete set of genes, and chromatin immunoprecipitation shows that Mesp1 directly binds to regulatory DNA sequences located in the promoter of many key genes in the core cardiac transcriptional machinery, resulting in their rapid upregulation. Mesp1 also directly represses the expression of key genes regulating other early mesoderm and endoderm cell fates. Our results demonstrate that Mesp1 acts as a key regulatory switch during cardiovascular specification, residing at the top of the hierarchy of the gene network responsible for cardiovascular cell-fate determination.


Development | 2006

Canonical Wnt signaling is required for development of embryonic stem cell-derived mesoderm

R. Coleman Lindsley; Jennifer G. Gill; Michael Kyba; Theresa L. Murphy; Kenneth M. Murphy

Formation of mesoderm from the pluripotent epiblast depends upon canonical Wnt/β-catenin signaling, although a precise molecular basis for this requirement has not been established. To develop a robust model of this developmental transition, we examined the role of Wnt signaling during the analogous stage of embryonic stem cell differentiation. We show that the kinetics of Wnt ligand expression and pathway activity in vitro mirror those found in vivo. Furthermore, inhibition of this endogenous Wnt signaling abrogates the functional competence of differentiating ES cells, reflected by their failure to generate Flk1+ mesodermal precursors and subsequent mature mesodermal lineages. Microarray analysis at various times during early differentiation reveal that mesoderm- and endoderm-associated genes fail to be induced in the absence of Wnt signaling, indicating a lack of germ layer induction that normally occurs during gastrulation in vivo. The earliest genes displaying Wnt-dependent expression, however, were those expressed in vivo in the primitive streak. Using an inducible form of stabilized β-catenin, we find that Wnt activity, although required, does not autonomously promote primitive streak-associated gene expression in vitro. Our results suggest that Wnt signaling functions in this model system to regulate the thresholds or stability of responses to other effector pathways and demonstrate that differentiating ES cells represent a useful model system for defining complex regulatory interactions underlying primary germ layer induction.


Nature Medicine | 2008

Functional skeletal muscle regeneration from differentiating embryonic stem cells

Radbod Darabi; Kimberly Gehlbach; Robert M. Bachoo; Shwetha Kamath; Mitsujiro Osawa; Kristine E. Kamm; Michael Kyba; Rita C.R. Perlingeiro

Little progress has been made toward the use of embryonic stem (ES) cells to study and isolate skeletal muscle progenitors. This is due to the paucity of paraxial mesoderm formation during embryoid body (EB) in vitro differentiation and to the lack of reliable identification and isolation criteria for skeletal muscle precursors. Here we show that expression of the transcription factor Pax3 during embryoid body differentiation enhances both paraxial mesoderm formation and the myogenic potential of the cells within this population. Transplantation of Pax3-induced cells results in teratomas, however, indicating the presence of residual undifferentiated cells. By sorting for the PDGF-α receptor, a marker of paraxial mesoderm, and for the absence of Flk-1, a marker of lateral plate mesoderm, we derive a cell population from differentiating ES cell cultures that has substantial muscle regeneration potential. Intramuscular and systemic transplantation of these cells into dystrophic mice results in extensive engraftment of adult myofibers with enhanced contractile function without the formation of teratomas. These data demonstrate the therapeutic potential of ES cells in muscular dystrophy.


PLOS Genetics | 2010

Facioscapulohumeral Dystrophy: Incomplete Suppression of a Retrotransposed Gene

Lauren Snider; Linda N. Geng; Richard J.L.F. Lemmers; Michael Kyba; Carol B. Ware; Angelique M. Nelson; Rabi Tawil; Galina N. Filippova; Silvère M. van der Maarel; Stephen J. Tapscott; Daniel G. Miller

Each unit of the D4Z4 macrosatellite repeat contains a retrotransposed gene encoding the DUX4 double-homeobox transcription factor. Facioscapulohumeral dystrophy (FSHD) is caused by deletion of a subset of the D4Z4 units in the subtelomeric region of chromosome 4. Although it has been reported that the deletion of D4Z4 units induces the pathological expression of DUX4 mRNA, the association of DUX4 mRNA expression with FSHD has not been rigorously investigated, nor has any human tissue been identified that normally expresses DUX4 mRNA or protein. We show that FSHD muscle expresses a different splice form of DUX4 mRNA compared to control muscle. Control muscle produces low amounts of a splice form of DUX4 encoding only the amino-terminal portion of DUX4. FSHD muscle produces low amounts of a DUX4 mRNA that encodes the full-length DUX4 protein. The low abundance of full-length DUX4 mRNA in FSHD muscle cells represents a small subset of nuclei producing a relatively high abundance of DUX4 mRNA and protein. In contrast to control skeletal muscle and most other somatic tissues, full-length DUX4 transcript and protein is expressed at relatively abundant levels in human testis, most likely in the germ-line cells. Induced pluripotent (iPS) cells also express full-length DUX4 and differentiation of control iPS cells to embryoid bodies suppresses expression of full-length DUX4, whereas expression of full-length DUX4 persists in differentiated FSHD iPS cells. Together, these findings indicate that full-length DUX4 is normally expressed at specific developmental stages and is suppressed in most somatic tissues. The contraction of the D4Z4 repeat in FSHD results in a less efficient suppression of the full-length DUX4 mRNA in skeletal muscle cells. Therefore, FSHD represents the first human disease to be associated with the incomplete developmental silencing of a retrogene array normally expressed early in development.


Cell Stem Cell | 2012

Human ES- and iPS-derived myogenic progenitors restore DYSTROPHIN and improve contractility upon transplantation in dystrophic mice.

Radbod Darabi; Robert W. Arpke; Stefan Irion; John T. Dimos; Marica Grskovic; Michael Kyba; Rita C.R. Perlingeiro

A major obstacle in the application of cell-based therapies for the treatment of neuromuscular disorders is obtaining the appropriate number of stem/progenitor cells to produce effective engraftment. The use of embryonic stem (ES) or induced pluripotent stem (iPS) cells could overcome this hurdle. However, to date, derivation of engraftable skeletal muscle precursors that can restore muscle function from human pluripotent cells has not been achieved. Here we applied conditional expression of PAX7 in human ES/iPS cells to successfully derive large quantities of myogenic precursors, which, upon transplantation into dystrophic muscle, are able to engraft efficiently, producing abundant human-derived DYSTROPHIN-positive myofibers that exhibit superior strength. Importantly, transplanted cells also seed the muscle satellite cell compartment, and engraftment is present over 11 months posttransplant. This study provides the proof of principle for the derivation of functional skeletal myogenic progenitors from human ES/iPS cells and highlights their potential for future therapeutic application in muscular dystrophies.


Cell Stem Cell | 2008

ER71 Acts Downstream of BMP, Notch, and Wnt Signaling in Blood and Vessel Progenitor Specification

Dongjun Lee; Changwon Park; Ho Lee; Jesse J. Lugus; Seok Hyung Kim; Elizabeth Arentson; Yun Shin Chung; Gustavo Gomez; Michael Kyba; Shuo Lin; Ralf Janknecht; Dae-Sik Lim; Kyunghee Choi

FLK1-expressing (FLK1(+)) mesoderm generates blood and vessels. Here, we show that combined BMP, Notch, and Wnt signaling is necessary for efficient FLK1(+) mesoderm formation from embryonic stem cells (ESCs). Inhibition of BMP, Notch, and Wnt signaling pathways greatly decreased the generation of FLK1(+) mesoderm and expression of the Ets transcription factor Er71. Enforced expression of ER71 in ESCs resulted in a robust induction of FLK1(+) mesoderm; rescued the generation of FLK1(+) mesoderm when blocked by BMP, Notch, and Wnt inhibition; and enhanced hematopoietic and endothelial cell generation. Er71-deficient mice had greatly reduced FLK1 expression, died early in gestation, and displayed severe blood and vessel defects that are highly reminiscent of the Flk1 null mouse phenotype. Collectively, we provide compelling evidence that ER71 functions downstream of BMP, Notch, and Wnt signals and regulates FLK1(+) mesoderm, blood, and vessel development.

Collaboration


Dive into the Michael Kyba's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Radbod Darabi

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dawn A. Lowe

University of Minnesota

View shared research outputs
Researchain Logo
Decentralizing Knowledge