Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rita C.R. Perlingeiro is active.

Publication


Featured researches published by Rita C.R. Perlingeiro.


Cell | 2002

HoxB4 confers definitive lymphoid-myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors.

Michael Kyba; Rita C.R. Perlingeiro; George Q. Daley

The extent to which primitive embryonic blood progenitors contribute to definitive lymphoid-myeloid hematopoiesis in the adult remains uncertain. In an effort to characterize factors that distinguish the definitive adult hematopoietic stem cell (HSC) and primitive progenitors derived from yolk sac or embryonic stem (ES) cells, we examined the effect of ectopic expression of HoxB4, a homeotic selector gene implicated in self-renewal of definitive HSCs. Expression of HoxB4 in primitive progenitors combined with culture on hematopoietic stroma induces a switch to the definitive HSC phenotype. These progenitors engraft lethally irradiated adults and contribute to long-term, multilineage hematopoiesis in primary and secondary recipients. Our results suggest that primitive HSCs are poised to become definitive HSCs and that this transition can be promoted by HoxB4 expression. This strategy for blood engraftment enables modeling of hematopoietic transplantation from ES cells.


Nature Medicine | 2008

Functional skeletal muscle regeneration from differentiating embryonic stem cells

Radbod Darabi; Kimberly Gehlbach; Robert M. Bachoo; Shwetha Kamath; Mitsujiro Osawa; Kristine E. Kamm; Michael Kyba; Rita C.R. Perlingeiro

Little progress has been made toward the use of embryonic stem (ES) cells to study and isolate skeletal muscle progenitors. This is due to the paucity of paraxial mesoderm formation during embryoid body (EB) in vitro differentiation and to the lack of reliable identification and isolation criteria for skeletal muscle precursors. Here we show that expression of the transcription factor Pax3 during embryoid body differentiation enhances both paraxial mesoderm formation and the myogenic potential of the cells within this population. Transplantation of Pax3-induced cells results in teratomas, however, indicating the presence of residual undifferentiated cells. By sorting for the PDGF-α receptor, a marker of paraxial mesoderm, and for the absence of Flk-1, a marker of lateral plate mesoderm, we derive a cell population from differentiating ES cell cultures that has substantial muscle regeneration potential. Intramuscular and systemic transplantation of these cells into dystrophic mice results in extensive engraftment of adult myofibers with enhanced contractile function without the formation of teratomas. These data demonstrate the therapeutic potential of ES cells in muscular dystrophy.


Cell Stem Cell | 2012

Human ES- and iPS-derived myogenic progenitors restore DYSTROPHIN and improve contractility upon transplantation in dystrophic mice.

Radbod Darabi; Robert W. Arpke; Stefan Irion; John T. Dimos; Marica Grskovic; Michael Kyba; Rita C.R. Perlingeiro

A major obstacle in the application of cell-based therapies for the treatment of neuromuscular disorders is obtaining the appropriate number of stem/progenitor cells to produce effective engraftment. The use of embryonic stem (ES) or induced pluripotent stem (iPS) cells could overcome this hurdle. However, to date, derivation of engraftable skeletal muscle precursors that can restore muscle function from human pluripotent cells has not been achieved. Here we applied conditional expression of PAX7 in human ES/iPS cells to successfully derive large quantities of myogenic precursors, which, upon transplantation into dystrophic muscle, are able to engraft efficiently, producing abundant human-derived DYSTROPHIN-positive myofibers that exhibit superior strength. Importantly, transplanted cells also seed the muscle satellite cell compartment, and engraftment is present over 11 months posttransplant. This study provides the proof of principle for the derivation of functional skeletal myogenic progenitors from human ES/iPS cells and highlights their potential for future therapeutic application in muscular dystrophies.


Stem Cells | 2008

Prospective isolation of skeletal muscle stem cells with a Pax7 reporter.

Darko Bosnakovski; Zhaohui Xu; Wei Li; Suwannee Thet; Ondine Cleaver; Rita C.R. Perlingeiro; Michael Kyba

Muscle regeneration occurs through activation of quiescent satellite cells whose progeny proliferate, differentiate, and fuse to make new myofibers. We used a transgenic Pax7‐ZsGreen reporter mouse to prospectively isolate stem cells of skeletal muscle by flow cytometry. We show that Pax7‐expressing cells (satellite cells) in the limb, head, and diaphragm muscles are homogeneous in size and granularity and uniformly labeled by certain cell surface markers, including CD34 and CD29. The frequency of the satellite cells varies between muscle types and with age. Clonal analysis demonstrated that all colonies arising from single cells within the Pax7‐sorted fraction have myogenic potential. In response to injury, Pax7+ cells reduce CD34, CD29, and CXCR4 expression, increase in size, and acquire Sca‐1. When directly isolated and cultured in vitro, Pax7+ cells display the hallmarks of activation and proliferate, initially as suspension aggregates and later distributed between suspension and adherence. During in vitro expansion, Pax7 (ZsGreen) and CD34 expression decline, whereas expression of PSA‐NCAM is acquired. The nonmyogenic, Pax7neg cells expand as Sca1+ PDGRα+ PSA‐NCAMneg cells. Satellite cells expanded exclusively in suspension can engraft and produce dystrophin+ fibers in mdx−/− mice. These results establish a novel animal model for the study of muscle stem cell physiology and a culture system for expansion of engraftable muscle progenitors.


Nature Communications | 2013

An ex vivo gene therapy approach to treat muscular dystrophy using inducible pluripotent stem cells

Antonio Filareto; Sarah Parker; Radbod Darabi; Luciene Borges; Michelina Iacovino; Tory M. Schaaf; Timothy Mayerhofer; Jeffrey S. Chamberlain; James M. Ervasti; R. Scott McIvor; Michael Kyba; Rita C.R. Perlingeiro

Duchenne muscular dystrophy is a progressive and incurable neuromuscular disease caused by genetic and biochemical defects of the dystrophin-glycoprotein complex. Here we show the regenerative potential of myogenic progenitors derived from corrected dystrophic induced pluripotent stem (iPS) cells generated from fibroblasts of mice lacking both dystrophin and utrophin. We correct the phenotype of dystrophic iPS cells using a Sleeping Beauty transposon carrying the micro-utrophin (μUTRN) gene, differentiate these cells into skeletal muscle progenitors, and transplant them back into dystrophic mice. Engrafted muscles displayed large numbers of micro-utrophin-positive myofibers, with biochemically restored dystrophin-glycoprotein complex and improved contractile strength. The transplanted cells seed the satellite cell compartment, responded properly to injury and exhibit neuromuscular synapses. We also detect muscle engraftment after systemic delivery of these corrected progenitors. These results represent an important advance toward the future treatment of muscular dystrophies using genetically corrected autologous iPS cells.


Stem Cells | 2011

Assessment of the Myogenic Stem Cell Compartment Following Transplantation of Pax3/Pax7-Induced Embryonic Stem Cell-Derived Progenitors

Radbod Darabi; Filipe Nadir Caparica Santos; Antonio Filareto; Weihong Pan; Ryan J. Koene; Michael A. Rudnicki; Michael Kyba; Rita C.R. Perlingeiro

An effective long‐term cell therapy for skeletal muscle regeneration requires donor contribution to both muscle fibers and the muscle stem cell pool. Although satellite cells have these abilities, their therapeutic potential so far has been limited due to their scarcity in adult muscle. Myogenic progenitors obtained from Pax3‐engineered mouse embryonic stem (ES) cells have the ability to generate myofibers and to improve the contractility of transplanted muscles in vivo, however, whether these cells contribute to the muscle stem cell pool and are able to self‐renew in vivo are still unknown. Here, we addressed this question by investigating the ability of Pax3, which plays a critical role in embryonic muscle formation, and Pax7, which is important for maintenance of the muscle satellite cell pool, to promote the derivation of self‐renewing functional myogenic progenitors from ES cells. We show that Pax7, like Pax3, can drive the expansion of an ES‐derived myogenic progenitor with significant muscle regenerative potential. We further demonstrate that a fraction of transplanted cells remains mononuclear, and displays key features of skeletal muscle stem cells, including satellite cell localization, response to reinjury, and contribution to muscle regeneration in secondary transplantation assays. The ability to engraft, self‐renew, and respond to injury provide foundation for the future therapeutic application of ES‐derived myogenic progenitors in muscle disorders. STEM CELLS 2011;29:777–790


Stem Cell Reviews and Reports | 2011

Functional Myogenic Engraftment from Mouse iPS Cells

Radbod Darabi; Weihong Pan; Darko Bosnakovski; June Baik; Michael Kyba; Rita C.R. Perlingeiro

Direct reprogramming of adult fibroblasts to a pluripotent state has opened new possibilities for the generation of patient- and disease-specific stem cells. However the ability of induced pluripotent stem (iPS) cells to generate tissue that mediates functional repair has been demonstrated in very few animal models of disease to date. Here we present the proof of principle that iPS cells may be used effectively for the treatment of muscle disorders. We combine the generation of iPS cells with conditional expression of Pax7, a robust approach to derive myogenic progenitors. Transplantation of Pax7-induced iPS-derived myogenic progenitors into dystrophic mice results in extensive engraftment, which is accompanied by improved contractility of treated muscles. These findings demonstrate the myogenic regenerative potential of iPS cells and provide rationale for their future therapeutic application for muscular dystrophies.


Experimental Neurology | 2008

DUX4c, an FSHD candidate gene, interferes with myogenic regulators and abolishes myoblast differentiation.

Darko Bosnakovski; Sarah Lamb; Tugba Simsek; Zhaohui Xu; Alexandra Belayew; Rita C.R. Perlingeiro; Michael Kyba

Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant neuromuscular disease. It maps to the D4Z4 repeat array at 4q35, and correlates with a repeat contraction which derepresses transcription of local genes. Which, if any, of these genes is pathogenic to muscle, and through what molecular mechanism is unknown. The present study investigates the function of one candidate gene, DUX4c, encoded by a truncated inverted D4Z4 element located 42 kb proximal to the D4Z4 repeats. Using a gain of function approach we tested DUX4c for toxicity and effects on differentiation in C2C12 myoblasts. DUX4c-expressing myoblasts appear morphologically normal but have reduced expression of myogenic regulators, including MyoD and Myf5. Consistent with this, DUX4c-expressing myoblasts are unable to differentiate into myotubes. Furthermore, overexpression of Myf5 or MyoD rescued myoblast differentiation, suggesting that reductions in expression of these regulators are the relevant DUX4c-induced physiological changes that inhibit differentiation. Our results suggest that upregulation of DUX4c can have a deleterious effect on muscle homeostasis and regeneration, and point to a possible role for DUX4c in the pathology of FSHD.


Development | 2007

Endoglin is required for hemangioblast and early hematopoietic development

Rita C.R. Perlingeiro

Endoglin (ENG), an ancillary receptor for several members of the transforming growth factor (TGF)-beta superfamily, has a well-studied role in endothelial function. Here, we report that endoglin also plays an important role early in development at the level of the hemangioblast, an embryonic progenitor of the hematopoietic and endothelial lineages. Eng-/-, Eng+/- and Eng+/+ mouse embryonic stem (ES) cells were differentiated as embryoid bodies (EBs) and assayed for blast colony-forming cells (BL-CFCs). Our results showed a profound reduction in hemangioblast frequency in the absence of endoglin. Furthermore, cell-sorting experiments revealed that endoglin marks the hemangioblast on day 3 of EB differentiation. When analyzed for hematopoietic and endothelial activity, replated Eng-/- BL-CFCs presented limited hematopoietic potential, whereas endothelial differentiation was unaltered. Analysis of hematopoietic colony formation of EBs, at different time points, further supports a function for endoglin in early hematopoiesis. Taken together, these findings point to a role for endoglin in both hemangioblast specification and hematopoietic commitment.


Experimental Cell Research | 2009

Engraftment of mesenchymal stem cells into dystrophin-deficient mice is not accompanied by functional recovery

Eun Ji Gang; Radbod Darabi; Darko Bosnakovski; Zhaohui Xu; Kristine E. Kamm; Michael Kyba; Rita C.R. Perlingeiro

Mesenchymal stem cell preparations have been proposed for muscle regeneration in musculoskeletal disorders. Although MSCs have great in vitro expansion potential and possess the ability to differentiate into several mesenchymal lineages, myogenesis has proven to be much more difficult to induce. We have recently demonstrated that Pax3, the master regulator of the embryonic myogenic program, enables the in vitro differentiation of a murine mesenchymal stem cell line (MSCB9-Pax3) into myogenic progenitors. Here we show that injection of these cells into cardiotoxin-injured muscles of immunodeficient mice leads to the development of muscle tumors, resembling rhabdomyosarcomas. We then extended these studies to primary human mesenchymal stem cells (hMSCs) isolated from bone marrow. Upon genetic modification with a lentiviral vector encoding PAX3, hMSCs activated the myogenic program as demonstrated by expression of myogenic regulatory factors. Upon transplantation, the PAX3-modified MSCs did not generate rhabdomyosarcomas but rather, resulted in donor-derived myofibers. These were found at higher frequency in PAX3-transduced hMSCs than in mock-transduced MSCs. Nonetheless, neither engraftment of PAX3-modified or unmodified MSCs resulted in improved contractility. Thus these findings suggest that limitations remain to be overcome before MSC preparations result in effective treatment for muscular dystrophies.

Collaboration


Dive into the Rita C.R. Perlingeiro's collaboration.

Top Co-Authors

Avatar

Michael Kyba

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

Radbod Darabi

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

June Baik

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge