Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael L. Blinov is active.

Publication


Featured researches published by Michael L. Blinov.


Nature Biotechnology | 2010

The BioPAX community standard for pathway data sharing

Emek Demir; Michael P. Cary; Suzanne M. Paley; Ken Fukuda; Christian Lemer; Imre Vastrik; Guanming Wu; Peter D'Eustachio; Carl F. Schaefer; Joanne S. Luciano; Frank Schacherer; Irma Martínez-Flores; Zhenjun Hu; Verónica Jiménez-Jacinto; Geeta Joshi-Tope; Kumaran Kandasamy; Alejandra López-Fuentes; Huaiyu Mi; Elgar Pichler; Igor Rodchenkov; Andrea Splendiani; Sasha Tkachev; Jeremy Zucker; Gopal Gopinath; Harsha Rajasimha; Ranjani Ramakrishnan; Imran Shah; Mustafa Syed; Nadia Anwar; Özgün Babur

Biological Pathway Exchange (BioPAX) is a standard language to represent biological pathways at the molecular and cellular level and to facilitate the exchange of pathway data. The rapid growth of the volume of pathway data has spurred the development of databases and computational tools to aid interpretation; however, use of these data is hampered by the current fragmentation of pathway information across many databases with incompatible formats. BioPAX, which was created through a community process, solves this problem by making pathway data substantially easier to collect, index, interpret and share. BioPAX can represent metabolic and signaling pathways, molecular and genetic interactions and gene regulation networks. Using BioPAX, millions of interactions, organized into thousands of pathways, from many organisms are available from a growing number of databases. This large amount of pathway data in a computable form will support visualization, analysis and biological discovery.


Bioinformatics | 2004

BioNetGen: software for rule-based modeling of signal transduction based on the interactions of molecular domains

Michael L. Blinov; James R. Faeder; Byron Goldstein; William S. Hlavacek

BioNetGen allows a user to create a computational model that characterizes the dynamics of a signal transduction system, and that accounts comprehensively and precisely for specified enzymatic activities, potential post-translational modifications and interactions of the domains of signaling molecules. The output defines and parameterizes the network of molecular species that can arise during signaling and provides functions that relate model variables to experimental readouts of interest. Models that can be generated are relevant for rational drug discovery, analysis of proteomic data and mechanistic studies of signal transduction.


Science Signaling | 2006

Rules for Modeling Signal-Transduction Systems

William S. Hlavacek; James R. Faeder; Michael L. Blinov; Richard G. Posner; Michael Hucka; Walter Fontana

Formalized rules for protein-protein interactions have recently been introduced to represent the binding and enzymatic activities of proteins in cellular signaling. Rules encode an understanding of how a system works in terms of the biomolecules in the system and their possible states and interactions. A set of rules can be as easy to read as a diagrammatic interaction map, but unlike most such maps, rules have precise interpretations. Rules can be processed to automatically generate a mathematical or computational model for a system, which enables explanatory and predictive insights into the system’s behavior. Rules are independent units of a model specification that facilitate model revision. Instead of changing a large number of equations or lines of code, as may be required in the case of a conventional mathematical model, a protein interaction can be introduced or modified simply by adding or changing a single rule that represents the interaction of interest. Rules can be defined and visualized by using graphs, so no specialized training in mathematics or computer science is necessary to create models or to take advantage of the representational precision of rules. Rules can be encoded in a machine-readable format to enable electronic storage and exchange of models, as well as basic knowledge about protein-protein interactions. Here, we review the motivation for rule-based modeling; applications of the approach; and issues that arise in model specification, simulation, and testing. We also discuss rule visualization and exchange and the software available for rule-based modeling. Signaling molecules that control cellular regulation operate in complex networks of molecular interactions within the cell. Many of the individual proteins undergo multiple posttranslational modifications and can thus exist in numerous biochemically distinct states. We explore how mathematical models can cope with such complexity when intuition is insufficient to understand a regulatory scheme. We review approaches to creation of mathematical models of signaling systems with strategies that keep the models from being unwieldy but still allow them to accurately reflect biological systems. We discuss the translation of information about such signaling pathways into a computer-readable language that could allow interoperability of various models. The review has 10 figures and 155 citations and contains Web links to Web sites relevant to the various modeling efforts discussed.


Methods of Molecular Biology | 2009

Rule-Based Modeling of Biochemical Systems with BioNetGen

James R. Faeder; Michael L. Blinov; William S. Hlavacek

Rule-based modeling involves the representation of molecules as structured objects and molecular interactions as rules for transforming the attributes of these objects. The approach is notable in that it allows one to systematically incorporate site-specific details about protein-protein interactions into a model for the dynamics of a signal-transduction system, but the method has other applications as well, such as following the fates of individual carbon atoms in metabolic reactions. The consequences of protein-protein interactions are difficult to specify and track with a conventional modeling approach because of the large number of protein phosphoforms and protein complexes that these interactions potentially generate. Here, we focus on how a rule-based model is specified in the BioNetGen language (BNGL) and how a model specification is analyzed using the BioNetGen software tool. We also discuss new developments in rule-based modeling that should enable the construction and analyses of comprehensive models for signal transduction pathways and similarly large-scale models for other biochemical systems.


Iet Systems Biology | 2008

Virtual cell modelling and simulation software environment

Ion I. Moraru; James C. Schaff; Boris M. Slepchenko; Michael L. Blinov; Frank Morgan; Anuradha Lakshminarayana; Fei Gao; Ye Li; Leslie M. Loew

The Virtual Cell (VCell; http://vcell.org/) is a problem solving environment, built on a central database, for analysis, modelling and simulation of cell biological processes. VCell integrates a growing range of molecular mechanisms, including reaction kinetics, diffusion, flow, membrane transport, lateral membrane diffusion and electrophysiology, and can associate these with geometries derived from experimental microscope images. It has been developed and deployed as a web-based, distributed, client-server system, with more than a thousand world-wide users. VCell provides a separation of layers (core technologies and abstractions) representing biological models, physical mechanisms, geometry, mathematical models and numerical methods. This separation clarifies the impact of modelling decisions, assumptions and approximations. The result is a physically consistent, mathematically rigorous, spatial modelling and simulation framework. Users create biological models and VCell will automatically (i) generate the appropriate mathematical encoding for running a simulation and (ii) generate and compile the appropriate computer code. Both deterministic and stochastic algorithms are supported for describing and running non-spatial simulations; a full partial differential equation solver using the finite volume numerical algorithm is available for reaction-diffusion-advection simulations in complex cell geometries including 3D geometries derived from microscope images. Using the VCell database, models and model components can be reused and updated, as well as privately shared among collaborating groups, or published. Exchange of models with other tools is possible via import/export of SBML, CellML and MatLab formats. Furthermore, curation of models is facilitated by external database binding mechanisms for unique identification of components and by standardised annotations compliant with the MIRIAM standard. VCell is now open source, with its native model encoding language (VCML) being a public specification, which stands as the basis for a new generation of more customised, experiment-centric modelling tools using a new plug-in based platform.


Journal of Immunology | 2003

Investigation of Early Events in FcεRI-Mediated Signaling Using a Detailed Mathematical Model

James R. Faeder; William S. Hlavacek; Ilona Reischl; Michael L. Blinov; Henry Metzger; Antonio Redondo; Carla Wofsy; Byron Goldstein

Aggregation of FcεRI on mast cells and basophils leads to autophosphorylation and increased activity of the cytosolic protein tyrosine kinase Syk. We investigated the roles of the Src kinase Lyn, the immunoreceptor tyrosine-based activation motifs (ITAMs) on the β and γ subunits of FcεRI, and Syk itself in the activation of Syk. Our approach was to build a detailed mathematical model of reactions involving FcεRI, Lyn, Syk, and a bivalent ligand that aggregates FcεRI. We applied the model to experiments in which covalently cross-linked IgE dimers stimulate rat basophilic leukemia cells. The model makes it possible to test the consistency of mechanistic assumptions with data that alone provide limited mechanistic insight. For example, the model helps sort out mechanisms that jointly control dephosphorylation of receptor subunits. In addition, interpreted in the context of the model, experimentally observed differences between the β- and γ-chains with respect to levels of phosphorylation and rates of dephosphorylation indicate that most cellular Syk, but only a small fraction of Lyn, is available to interact with receptors. We also show that although the β ITAM acts to amplify signaling in experimental systems where its role has been investigated, there are conditions under which the β ITAM will act as an inhibitor.


Journal of Biology | 2009

Molecular machines or pleiomorphic ensembles: signaling complexes revisited

Bruce J. Mayer; Michael L. Blinov; Leslie M. Loew

Signaling complexes typically consist of highly dynamic molecular ensembles that are challenging to study and to describe accurately. Conventional mechanical descriptions misrepresent this reality and can be actively counterproductive by misdirecting us away from investigating critical issues.


Molecular Immunology | 2002

Modeling the early signaling events mediated by FcεRI

Byron Goldstein; James R. Faeder; William S. Hlavacek; Michael L. Blinov; Antonio Redondo; Carla Wofsy

We present a detailed mathematical model of the phosphorylation and dephosphorylation events that occur upon ligand-induced receptor aggregation, for a transfectant expressing FcepsilonRI, Lyn, Syk and endogenous phosphatases that dephosphorylate exposed phosphotyrosines on FcepsilonRI and Syk. Through model simulations we show how changing the ligand concentration, and consequently the concentration of receptor aggregates, can change the nature of a cellular response as well as its amplitude. We illustrate the value of the model in analyzing experimental data by using it to show that the intrinsic rate of dephosphorylation of the FcepsilonRI gamma immunoreceptor tyrosine-based activation motif (ITAM) in rat basophilic leukemia (RBL) cells is much faster than the observed rate, provided that all of the cytosolic Syk is available to receptors.


Nucleic Acids Research | 2009

PMAP: databases for analyzing proteolytic events and pathways

Yoshinobu Igarashi; Emily Heureux; Kutbuddin S. Doctor; Priti Talwar; Svetlana Gramatikova; Kosi Gramatikoff; Ying Zhang; Michael L. Blinov; Salmaz S. Ibragimova; Sarah E. Boyd; Boris I. Ratnikov; Piotr Cieplak; Adam Godzik; Jeffrey W. Smith; Andrei L. Osterman; Alexey Eroshkin

The Proteolysis MAP (PMAP, http://www.proteolysis.org) is a user-friendly website intended to aid the scientific community in reasoning about proteolytic networks and pathways. PMAP is comprised of five databases, linked together in one environment. The foundation databases, ProteaseDB and SubstrateDB, are driven by an automated annotation pipeline that generates dynamic ‘Molecule Pages’, rich in molecular information. PMAP also contains two community annotated databases focused on function; CutDB has information on more than 5000 proteolytic events, and ProfileDB is dedicated to information of the substrate recognition specificity of proteases. Together, the content within these four databases will ultimately feed PathwayDB, which will be comprised of known pathways whose function can be dynamically modeled in a rule-based manner, and hypothetical pathways suggested by semi-automated culling of the literature. A Protease Toolkit is also available for the analysis of proteases and proteolysis. Here, we describe how the databases of PMAP can be used to foster understanding of proteolytic pathways, and equally as significant, to reason about proteolysis.


acm symposium on applied computing | 2005

Graphical rule-based representation of signal-transduction networks

James R. Faeder; Michael L. Blinov; William S. Hlavacek

The process by which a cell senses and responds to its environment, as in signal transduction, is often mediated by a network of protein-protein interactions, in which proteins combine to form complexes and undergo post-translational modifications, which regulate their enzymatic and binding activities. A typical signaling protein contains multiple sites of protein interaction and modification and may contain catalytic domains. As a result, interactions of signaling proteins have the potential to generate a combinatorially large number of complexes and modified states, and representing signal-transduction networks can be challenging. Representation, in the form of a diagram or model, usually involves a tradeoff between comprehensibility and precision: comprehensible representations tend to be ambiguous or incomplete, whereas precise representations, such as a long list of chemical species and reactions in a network, tend to be incomprehensible. Here, we develop conventions for representing signal-transduction networks that are both comprehensible and precise. Labeled nodes represent components of proteins and their states, and edges represent bonds between components. Binding and enzymatic reactions are described by reaction rules, in which left graphs define the properties of reactants and right graphs define the products that result from transformations of reactants. The reaction rules can be evaluated to derive a mathematical model.

Collaboration


Dive into the Michael L. Blinov's collaboration.

Top Co-Authors

Avatar

Ion I. Moraru

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William S. Hlavacek

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Leslie M. Loew

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar

James C. Schaff

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar

Byron Goldstein

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Oliver Ruebenacker

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar

Emek Demir

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Huaiyu Mi

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Carl F. Schaefer

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge