Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Mak is active.

Publication


Featured researches published by Michael Mak.


PLOS ONE | 2011

Microfabricated Physical Spatial Gradients for Investigating Cell Migration and Invasion Dynamics

Michael Mak; Cynthia A. Reinhart-King; David Erickson

We devise a novel assay that introduces micro-architectures into highly confining microchannels to probe the decision making processes of migrating cells. The conditions are meant to mimic the tight spaces in the physiological environment that cancer cells encounter during metastasis within the matrix dense stroma and during intravasation and extravasation through the vascular wall. In this study we use the assay to investigate the relative probabilities of a cell 1) permeating and 2) repolarizing (turning around) when it migrates into a spatially confining region. We observe the existence of both states even within a single cell line, indicating phenotypic heterogeneity in cell migration invasiveness and persistence. We also show that varying the spatial gradient of the taper can induce behavioral changes in cells, and different cell types respond differently to spatial changes. Particularly, for bovine aortic endothelial cells (BAECs), higher spatial gradients induce more cells to permeate (60%) than lower gradients (12%). Furthermore, highly metastatic breast cancer cells (MDA-MB-231) demonstrate a more invasive and permeative nature (87%) than non-metastatic breast epithelial cells (MCF-10A) (25%). We examine the migration dynamics of cells in the tapered region and derive characteristic constants that quantify this transition process. Our data indicate that cell response to physical spatial gradients is both cell-type specific and heterogeneous within a cell population, analogous to the behaviors reported to occur during tumor progression. Incorporation of micro-architectures in confined channels enables the probing of migration behaviors specific to defined geometries that mimic in vivo microenvironments.


Integrative Biology | 2013

A serial micropipette microfluidic device with applications to cancer cell repeated deformation studies

Michael Mak; David Erickson

Cells are complex viscoelastic materials that are frequently in deformed morphological states, particularly during the cancer invasion process. The ability to study cell mechanical deformability in an accessible way can be enabling in many areas of research where biomechanics is important, from cancer metastasis to immune response to stem cell differentiation. Furthermore, phenomena in biology are frequently exhibited in high multiplicity. For instance, during metastasis, cells undergoing non-proteolytic invasion squeeze through a multitude of physiological barriers, including many small pores in the dense extracellular matrix (ECM) of the tumor stroma. Therefore, it is important to perform multiple measurements of the same property even for the same cell in order to fully appreciate its dynamics and variability, especially in the high recurrence regime. We have created a simple and minimalistic micropipette system with automated operational procedures that can sample the deformation and relaxation dynamics of single-cells serially and in a parallel manner. We demonstrated its ability to elucidate the impact of an initial cell deformation event on subsequent deformations for untreated and paclitaxel treated MDA-MB-231 metastatic breast cancer cells, and we examined contributions from the cell nucleus during whole-cell micropipette experiments. Finally we developed an empirical model that characterizes the serial factor, which describes the reduction in cost for cell deformations across sequential constrictions. We performed experiments using spatial, temporal, and force scales that match physiological and biomechanical processes, thus potentially enabling a qualitatively more pertinent representation of the functional attributes of cell deformability.


Nature Communications | 2016

Interplay of active processes modulates tension and drives phase transition in self-renewing, motor-driven cytoskeletal networks

Michael Mak; Muhammad H. Zaman; Roger D. Kamm; Taeyoon Kim

The actin cytoskeleton—a complex, nonequilibrium network consisting of filaments, actin-crosslinking proteins (ACPs) and motors—confers cell structure and functionality, from migration to morphogenesis. While the core components are recognized, much less is understood about the behaviour of the integrated, disordered and internally active system with interdependent mechano-chemical component properties. Here we use a Brownian dynamics model that incorporates key and realistic features—specifically actin turnover, ACP (un)binding and motor walking—to reveal the nature and underlying regulatory mechanisms of overarching cytoskeletal states. We generate multi-dimensional maps that show the ratio in activity of these microscopic elements determines diverse global stress profiles and the induction of nonequilibrium morphological phase transition from homogeneous to aggregated networks. In particular, actin turnover dynamics plays a prominent role in tuning stress levels and stabilizing homogeneous morphologies in crosslinked, motor-driven networks. The consequence is versatile functionality, from dynamic steady-state prestress to large, pulsed constrictions.


PLOS Computational Biology | 2014

Impact of Dimensionality and Network Disruption on Microrheology of Cancer Cells in 3D Environments

Michael Mak; Roger D. Kamm; Muhammad H. Zaman

Dimensionality is a fundamental component that can have profound implications on the characteristics of physical systems. In cell biology, however, the majority of studies on cell physical properties, from rheology to force generation to migration, have been performed on 2D substrates, and it is not clear how a more realistic 3D environment influences cell properties. Here, we develop an integrated approach and demonstrate the combination of mitochondria-tracking microrheology, microfluidics, and Brownian dynamics simulations to explore the impact of dimensionality on intracellular mechanics and on the effects of intracellular disruption. Additionally, we consider both passive thermal and active motor-driven processes within the cell and demonstrate through modeling how active internal fluctuations are modulated via dimensionality. Our results demonstrate that metastatic breast cancer cells (MDA-MB-231) exhibit more solid-like internal motions in 3D compared to 2D, and actin network disruption via Cytochalasin D has a more pronounced effect on internal cell fluctuations in 2D. Our computational results and modeling show that motor-induced active stress fluctuations are enhanced in 2D, leading to increased local intracellular particle fluctuations and apparent fluid-like behavior.


Development | 2017

A process engineering approach to increase organoid yield

Natasha Arora; Jasmin Imran Alsous; Jacob W. Guggenheim; Michael Mak; Jorge O. Múnera; James M. Wells; Roger D. Kamm; H. Harry Asada; Stanislav Y. Shvartsman; Linda G. Griffith

ABSTRACT Temporal manipulation of the in vitro environment and growth factors can direct differentiation of human pluripotent stem cells into organoids – aggregates with multiple tissue-specific cell types and three-dimensional structure mimicking native organs. A mechanistic understanding of early organoid formation is essential for improving the robustness of these methods, which is necessary prior to use in drug development and regenerative medicine. We investigated intestinal organoid emergence, focusing on measurable parameters of hindgut spheroids, the intermediate step between definitive endoderm and mature organoids. We found that 13% of spheroids were pre-organoids that matured into intestinal organoids. Spheroids varied by several structural parameters: cell number, diameter and morphology. Hypothesizing that diameter and the morphological feature of an inner mass were key parameters for spheroid maturation, we sorted spheroids using an automated micropipette aspiration and release system and monitored the cultures for organoid formation. We discovered that populations of spheroids with a diameter greater than 75 μm and an inner mass are enriched 1.5- and 3.8-fold for pre-organoids, respectively, thus providing rational guidelines towards establishing a robust protocol for high quality intestinal organoids. Summary: Implementation of a workflow to identify structural features of intestinal spheroids - an intermediate step in organoid emergence from human pluripotent stem cells - can enrich for pre-organoids.


Physical Biology | 2016

Effects of 3D geometries on cellular gradient sensing and polarization

Fabian Spill; Vivi Andasari; Michael Mak; Roger D. Kamm; Muhammad H. Zaman

During cell migration, cells become polarized, change their shape, and move in response to various internal and external cues. Cell polarization is defined through the spatio-temporal organization of molecules such as PI3K or small GTPases, and is determined by intracellular signaling networks. It results in directional forces through actin polymerization and myosin contractions. Many existing mathematical models of cell polarization are formulated in terms of reaction-diffusion systems of interacting molecules, and are often defined in one or two spatial dimensions. In this paper, we introduce a 3D reaction-diffusion model of interacting molecules in a single cell, and find that cell geometry has an important role affecting the capability of a cell to polarize, or change polarization when an external signal changes direction. Our results suggest a geometrical argument why more roundish cells can repolarize more effectively than cells which are elongated along the direction of the original stimulus, and thus enable roundish cells to turn faster, as has been observed in experiments. On the other hand, elongated cells preferentially polarize along their main axis even when a gradient stimulus appears from another direction. Furthermore, our 3D model can accurately capture the effect of binding and unbinding of important regulators of cell polarization to and from the cell membrane. This spatial separation of membrane and cytosol, not possible to capture in 1D or 2D models, leads to marked differences of our model from comparable lower-dimensional models.


northeast bioengineering conference | 2014

Multiscale analysis of cancer cell mechanics

Michael Mak; Roger D. Kamm; Muhammad H. Zaman

Physiological phenomena occur in complex 3D environments. However, the mechanics of cells in 3D under relevant conditions such as flow and chemical signals are not well understood. These mechanics can have important implications in pathological events such as cancer metastasis, where cancer cells undergo transformations that enable invasive behavior across constrictive physiological barriers. In our work, we have taken an integrated computational and experimental approach to establish a multiscale understanding of the fundamental mechanical properties of cancer cells in native-like conditions.


Microfluidics and Nanofluidics | 2011

A novel polymer microneedle fabrication process for active fluidic delivery

Bernardo Cordovez; Aram J. Chung; Michael Mak; David Erickson


Integrative Biology | 2015

Multiscale mechanobiology: computational models for integrating molecules to multicellular systems.

Michael Mak; Taeyoon Kim; Muhammad H. Zaman; Roger D. Kamm


Lab on a Chip | 2014

Mechanical decision trees for investigating and modulating single-cell cancer invasion dynamics

Michael Mak; David Erickson

Collaboration


Dive into the Michael Mak's collaboration.

Top Co-Authors

Avatar

Roger D. Kamm

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge