Michael Mauksch
University of Erlangen-Nuremberg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael Mauksch.
Angewandte Chemie | 1998
Michael Mauksch; Valentin Gogonea; Haijun Jiao; Paul von Ragué Schleyer
Probably first generated as a reactive intermediate in the early 1970s, the C2-symmetric (CH)9+ cation (1) has now been recognized to be the first representative of the aromatic Mobius [4n]annulenes predicted by Heilbronner in 1964.
Chemistry: A European Journal | 2010
Michael Mauksch; Svetlana B. Tsogoeva
Möbius aromaticity, predicted by Edgar Heilbronner in 1964, is a stabilizing effect exhibited by 4n electron fully conjugated cyclic molecules (or transition states) with an odd number of orbital phase inversions. Although it has previously been suggested that this effect might also apply to planar metallacycles in which a transition metal employs a d orbital in delta-type binding mode, only very few examples of stable twisted molecules composed of main group elements are known. We report herein, the first computationally confirmed 4npi aromatic planar metallacyclic examples and their building principles. Aromatic stabilization energy (ASE) of a 8pi metalla-cycloheptatriene [Fe(CH)(6)H(2)], with four doubly occupied pi orbitals and a HOMA value of +0.80 (cf. benzene=+1.0), an NICS(0) value of -8.5 (benzene=-9.8, NICS=nucleus independent chemical shift), and with one phase inversion, is +27.5 kcal mol(-1) (about two-thirds of the value for benzene). In contrast, an unknown non-Möbius 1,4-dimetallabenzene [Fe(2)(CH)(4)H(4)], also with 8pi electrons, and without phase inversions, has an ASE of -4.1 kcal mol(-1) and a NICS(0)=+15.6, indicative of antiaromaticity. Aromaticity of the proposed Möbius aromatic metallacycles is confirmed by using magnetic (NICS(0), NICS(1)(zz), delta(1)H) and geometric (HOMA) aromaticity criteria, planarity, and near equalized C-C bond lengths, bonding analysis (Wiberg bond indices, NBO, and NLMO analysis). The role of wave function boundary conditions (periodic vs. antiperiodic) in chemistry is further stressed, being equivalent to Zimmermans concept of nodal parity for Möbius/Hückel systems.
ChemPhysChem | 2008
Michael Mauksch; Svetlana B. Tsogoeva
Asymmetric synthesis aims at obtaining enantio-enriched products in stereoselective reactions under a chiral influence. We demonstrate both mathematically and numerically that, even under nominally achiral conditions, fully homochiral steady states can be obtained in open reactive systems by spontaneous mirror-symmetry breaking in the homogenous solution phase when the autocatalytic reaction network is closed in the form of coherently coupled antagonistic reversible reaction cycles which, paradoxically, allow for complete recycling of the reactant. We show that the fully reversible Frank mechanism for spontaneous mirror-symmetry breaking is closely related to the Lotka-Volterra system, which models predator-prey relations in ecosystems. Amplification of total enantiomeric excess and the principle of microscopic reversibility are not in conflict for all conceivable reactions. A viable and widely applicable reaction protocol is introduced and discussed, and it permits the theoretical implications to be applied to practical laboratory examples. Implications for the possible origin of biological homochirality on early earth are discussed.
Origins of Life and Evolution of Biospheres | 2010
Michael Mauksch; Shengwei Wei; Matthias Freund; Alexandru Zamfir; Svetlana B. Tsogoeva
The origin of the single chirality of most biomolecules is still a great puzzle. Carbohydrates could form in the formose reaction, which is proposed to be autocatalytic and contains aldol reaction steps. Based on our earlier observation of organoautocatalysis and spontaneous enantioenrichment in absence of deliberate chiral influences in the aldol reaction of acetone and p-nitrobenzaldehyde we suggest that a similar effect might be present also in the aldol reactions involved in gluconeogenesis. Herein we show that reactant precipitation observed in our earlier reported experiments does not affect the asymmetric autocatalysis in the aldol reaction we studied. We explain the phenomenon of spontaneous mirror symmetry breaking in such organocatalytic homogenous systems qualitatively by non-linear reaction network kinetics and classical transition state theory.
Journal of Physical Chemistry A | 2009
Judy I. Wu; Frank Pühlhofer; Paul von Ragué Schleyer; Ralph Puchta; Boggavarapu Kiran; Michael Mauksch; Nico J. R. van Eikema Hommes; Ibon Alkorta; José Elguero
Despite having six highly electronegative Fs, perfluorobenzene C(6)F(6) is as aromatic as benzene. Ab initio block-localized wave function (BLW) computations reveal that both C(6)F(6) and benzene have essentially the same extra cyclic resonance energies (ECREs). Localized molecular orbital (LMO)-nucleus-independent chemical shifts (NICS) grids demonstrates that the Fs induce only local paratropic contributions that are not related to aromaticity. Thus, all of the fluorinated benzenes (C(6)F(n)H((6-n)), n = 1-6) have similar ring-LMO-NICS(pi zz) values. However, 1,3-difluorobenzene 2b and 1,3,5-trifluorobenzene 3c are slightly less aromatic than their isomers due to a greater degree of ring charge alternation. Isoelectronic C(5)H(5)Y heterocycles (Y = BH(-), N, NH(+)) are as aromatic as benzene, based on their ring-LMO-NICS(pi zz) and ECRE values, unless extremely electronegative heteroatoms (e.g., Y = O(+)) are involved.
Angewandte Chemie | 1998
Michael Mauksch; Valentin Gogonea; Haijun Jiao; Paul von Ragué Schleyer
Fast dreisig Jahre unerkannt blieb das wahrscheinlich schon Anfang der siebziger Jahre als reaktive Zwischenstufe erzeugte monocyclische, C2-symmetrische Kation (CH)9+1: Es ist das erste der bereits 1964 von Heilbronner vorhergesagten Mobius-aromatischen [4n]Annulene.
Chemistry: A European Journal | 2016
Michael Mauksch; Svetlana B. Tsogoeva
Herein, the Zimmerman Möbius/Hückel concept is extended to pericyclic reactions involving transition metals. While sigmatropic hydrogen shifts in parent hydrocarbons are either uniquely antarafacial or suprafacial, we have shown by theoretical orbital topology considerations and quantum chemical computations at DFT level that both modes of stereoselectivity must become allowed in the same system as a consequence of Craig-Möbius-type orbital arrays, in which a transition metal d orbital induces a phase dislocation in metallacycles. This may have fundamental implications for the understanding of reactivity and bonding in organometallic chemistry.
ChemPhysChem | 2016
Michael Mauksch; Svetlana B. Tsogoeva
Experimentalists are challenged to find the organometallic thermal electrocyclizations that are computationally predicted to proceed with opposite stereoselectivity compared to their metal-free parent 4n and 4n+2 π-electron systems. While ring closure of, for example, s-cis-butadiene proceeds conrotatory, an iron alkyl complex formed by replacement of a (CH) unit by an [FeH] metal fragment results in a disrotatory electrocyclization.
Chemistry: A European Journal | 2018
Michael Mauksch; Svetlana B. Tsogoeva
Magnetic aromaticity and antiaromaticity of closed shell metalloaromatics with 4d transition metals (Nb, Tc, Rh) is strictly correlated with the orbital topology (Möbius or Hückel) of their π-HOMO, investigated computationally with DFT methods. A surprisingly simple rule emerged: the metallacycle is aromatic (antiaromatic) when the number of π MOs is even and the π-HOMO is of Möbius (Hückel) topology-and vice versa when the number of π MOs is odd.
Angewandte Chemie | 2007
Michael Mauksch; Svetlana B. Tsogoeva; Irina M. Martynova; Shengwei Wei