Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael P. Kozar is active.

Publication


Featured researches published by Michael P. Kozar.


Malaria Journal | 2012

CYP450 phenotyping and accurate mass identification of metabolites of the 8-aminoquinoline, anti-malarial drug primaquine

Brandon S. Pybus; Jason Sousa; Xiannu Jin; James A Ferguson; Robert E Christian; Rebecca Barnhart; Chau Vuong; Richard J. Sciotti; Gregory A. Reichard; Michael P. Kozar; Larry A. Walker; Colin Ohrt; Victor Melendez

BackgroundThe 8-aminoquinoline (8AQ) drug primaquine (PQ) is currently the only approved drug effective against the persistent liver stage of the hypnozoite forming strains Plasmodium vivax and Plasmodium ovale as well as Stage V gametocytes of Plasmodium falciparum. To date, several groups have investigated the toxicity observed in the 8AQ class, however, exact mechanisms and/or metabolic species responsible for PQ’s haemotoxic and anti-malarial properties are not fully understood.MethodsIn the present study, the metabolism of PQ was evaluated using in vitro recombinant metabolic enzymes from the cytochrome P450 (CYP) and mono-amine oxidase (MAO) families. Based on this information, metabolite identification experiments were performed using nominal and accurate mass measurements.ResultsRelative activity factor (RAF)-weighted intrinsic clearance values show the relative role of each enzyme to be MAO-A, 2C19, 3A4, and 2D6, with 76.1, 17.0, 5.2, and 1.7% contributions to PQ metabolism, respectively. CYP 2D6 was shown to produce at least six different oxidative metabolites along with demethylations, while MAO-A products derived from the PQ aldehyde, a pre-cursor to carboxy PQ. CYPs 2C19 and 3A4 produced only trace levels of hydroxylated species.ConclusionsAs a result of this work, CYP 2D6 and MAO-A have been implicated as the key enzymes associated with PQ metabolism, and metabolites previously identified as potentially playing a role in efficacy and haemolytic toxicity have been attributed to production via CYP 2D6 mediated pathways.


Journal of Medicinal Chemistry | 2011

Antimalarial activity of novel 5-aryl-8-aminoquinoline derivatives.

Hiroaki Shiraki; Michael P. Kozar; Victor Melendez; Thomas H. Hudson; Colin Ohrt; Alan J. Magill; Ai J. Lin

In an attempt to separate the antimalarial activity of tafenoquine (3) from its hemolytic side effects in glucose-6-phosphate dehydrogenase (G6PD) deficiency patients, a series of 5-aryl-8-aminoquinoline derivatives was prepared and assessed for antimalarial activities. The new compounds were found metabolically stable in human and mouse microsomal preparations, with t(1/2) > 60 min, and were equal to or more potent than primaquine (2) and 3 against Plasmodium falciparum cell growth. The new agents were more active against the chloroquine (CQ) resistant clone than to the CQ-sensitive clone. Analogues with electron donating groups showed better activity than those with electron withdrawing substituents. Compounds 4bc, 4bd, and 4be showed comparable therapeutic index (TI) to that of 2 and 3, with TI ranging from 5 to 8 based on IC(50) data. The new compounds showed no significant causal prophylactic activity in mice infected with Plasmodium berghei sporozoites, but are substantially less toxic than 2 and 3 in mouse tests.


Journal of Medicinal Chemistry | 2005

In vitro metabolism of phenoxypropoxybiguanide analogues in human liver microsomes to potent antimalarial dihydrotriazines.

Todd W. Shearer; Michael P. Kozar; Michael T. O'Neil; Philip L. Smith; Guy Alan Schiehser; David P. Jacobus; Damaris S. Diaz; Youngsun Yang; Wilbur K. Milhous; Donald R. Skillman

Phenoxypropoxybiguanides, such as 1 (PS-15), are prodrugs analogous to the relationship of proguanil and its active metabolite cycloguanil. Unlike cycloguanil, however, 1a (WR99210), the active metabolite of 1, has retained in vitro potency against newly emerging antifolate-resistant malaria parasites. Unfortunately, manufacturing processes and gastrointestinal intolerance have prevented the clinical development of 1. In vitro antimalarial activity and in vitro metabolism studies have been performed on newly synthesized phenoxypropoxybiguanide analogues. All of the active dihydrotriazine metabolites exhibited potent antimalarial activity with in vitro IC(50) values less than 0.04 ng/mL. In vitro metabolism studies in human liver microsomes identified the production of not only the active dihydrotriazine metabolite, but also a desalkylation on the carbonyl chain, and multiple hydroxylated metabolites. The V(max) for production of the active metabolites ranged from 10.8 to 27.7 pmol/min/mg protein with the K(m) ranging from 44.8 to 221 microM. The results of these studies will be used to guide the selection of a lead candidate.


Pharmacology | 2011

In vitro Biotransformation, in vivo Efficacy and Pharmacokinetics of Antimalarial Chalcones

Clare E. Gutteridge; Darshan S. Thota; Sean M. Curtis; Michael P. Kozar; Qigui Li; Lisa Xie; Jing Zhang; Victor Melendez; Constance O. Asher; ThuLan Luong; Lucia Gerena; Daniel A. Nichols; Gettayacamin Montip

4′-n-Butoxy-2,4-dimethoxy-chalcone (MBC) has been described as protecting mice from an otherwise lethal infection with Plasmodium yoelii when dosed orally at 50 mg/kg/dose, daily for 5 days. In contrast, we found that oral dosing of MBC at 640 mg/kg/dose, daily for 5 days, failed to extend the survivability of P. berghei-infected mice. The timing of compound administration and metabolic activation likely contribute to the outcome of efficacy testing in vivo. Microsomal digest of MBC yielded 4′-n-butoxy-4-hydroxy-2-methoxy-chalcone and 4′-(1-hydroxy-n-butoxy)-2,4-dimethoxy-chalcone. We propose that the latter will hydrolyze in vivo to 4′-hydroxy-2,4-dimethoxy-chalcone, which has greater efficacy than MBC in our P. berghei-infected mouse model and was detected in plasma following oral dosing of mice with MBC. Pharmacokinetic parameters suggest that poor absorption, distribution, metabolism and excretion properties contribute to the limited in vivoefficacy observed for MBC and its analogs.


Malaria Journal | 2011

Central nervous system exposure of next generation quinoline methanols is reduced relative to mefloquine after intravenous dosing in mice

Geoffrey S. Dow; Erin E. Milner; Ian Bathurst; Jayendra B. Bhonsle; Diana Caridha; Sean Gardner; Lucia Gerena; Michael P. Kozar; Charlotte A. Lanteri; Anne Mannila; William McCalmont; Jay Moon; Kevin D. Read; Suzanne Norval; Norma Roncal; David M. Shackleford; Jason Sousa; Jessica Steuten; Karen L. White; Qiang Zeng; Susan A. Charman

BackgroundThe clinical use of mefloquine (MQ) has declined due to dose-related neurological events. Next generation quinoline methanols (NGQMs) that do not accumulate in the central nervous system (CNS) to the same extent may have utility. In this study, CNS levels of NGQMs relative to MQ were measured and an early lead chemotype was identified for further optimization.Experimental designThe plasma and brain levels of MQ and twenty five, 4-position modified NGQMs were determined using LCMS/MS at 5 min, 1, 6 and 24 h after IV administration (5 mg/kg) to male FVB mice. Fraction unbound in brain tissue homogenate was assessed in vitro using equilibrium dialysis and this was then used to calculate brain-unbound concentration from the measured brain total concentration. A five-fold reduction CNS levels relative to mefloquine was considered acceptable. Additional pharmacological properties such as permeability and potency were determined.ResultsThe maximum brain (whole/free) concentrations of MQ were 1807/4.9 ng/g. Maximum whole brain concentrations of NGQMs were 23 - 21546 ng/g. Maximum free brain concentrations were 0.5 to 267 ng/g. Seven (28%) and two (8%) compounds exhibited acceptable whole and free brain concentrations, respectively. Optimization of maximum free brain levels, IC90s (as a measure or potency) and residual plasma concentrations at 24 h (as a surrogate for half-life) in the same molecule may be feasible since they were not correlated. Diamine quinoline methanols were the most promising lead compounds.ConclusionReduction of CNS levels of NGQMs relative to mefloquine may be feasible. Optimization of this property together with potency and long half-life may be feasible amongst diamine quinoline methanols.


Journal of Medicinal Chemistry | 2011

Synthesis and Antimalarial Activity of 2-Guanidino-4-oxoimidazoline Derivatives

Liu X; Wang X; Qigui Li; Michael P. Kozar; Melendez; Michael T. O'Neil; Ai J. Lin

A series of 2-guanidino-4-oxoimidazoline (deoxo-IZ) derivatives was prepared and showed potent antimalarial activities in rodent and Rhesus models. Compound 8e, the most potent analogues of this series, is the first non-8-aminoqinoline antimalarial that demonstrated radical curative activity in non-human primate by oral route and showed causal prophylactic activity comparable to that of the commonly used clinical drugs in Rhesus monkeys infected with sporozoites of Plasmodium cynomolgi. The metabolic stability and metabolites profile indicated that the new deoxo-IZ derivatives (8) may act as prodrugs of the corresponding IZ (1 and 2) derivatives.


Journal of Medicinal Chemistry | 2011

Structure–Activity Relationships of 4-Position Diamine Quinoline Methanols as Intermittent Preventative Treatment (IPT) against Plasmodium falciparum

Erin E. Milner; Sean Gardner; Jay Moon; Kristina Grauer; Jennifer M. Auschwitz; Ian C. Bathurst; Diana Caridha; Lucia Gerena; Montip Gettayacamin; Jacob D. Johnson; Michael P. Kozar; Patricia J. Lee; Susan E. Leed; Qigui Li; William McCalmont; Victor Melendez; Norma Roncal; Richard J. Sciotti; Bryan Smith; Jason Sousa; Anchalee Tungtaeng; Peter Wipf; Geoffrey S. Dow

A library of diamine quinoline methanols were designed based on the mefloquine scaffold. The systematic variation of the 4-position amino alcohol side chain led to analogues that maintained potency while reducing accumulation in the central nervous system (CNS). Although the mechanism of action remains elusive, these data indicate that the 4-position side chain is critical for activity and that potency (as measured by IC(90)) does not correlate with accumulation in the CNS. A new lead compound, (S)-1-(2,8-bis(trifluoromethyl)quinolin-4-yl)-2-(2-(cyclopropylamino)ethylamino)ethanol (WR621308), was identified with single dose efficacy and substantially lower permeability across MDCK cell monolayers than mefloquine. This compound could be appropriate for intermittent preventative treatment (IPTx) indications or other malaria treatments currently approved for mefloquine.


European Journal of Drug Metabolism and Pharmacokinetics | 2012

Ketotifen is an antimalarial prodrug of norketotifen with blood schizonticidal and liver-stage efficacy

Erin E. Milner; Jason Sousa; Brandon S. Pybus; Jennifer M. Auschwitz; Diana Caridha; Sean Gardner; Kristina Grauer; Erin Harris; Mark Hickman; Michael P. Kozar; Patricia J. Lee; Susan E. Leed; Qigui Li; Victor Melendez; Jay Moon; Franklyn Ngundam; Michael T. O’Neil; Sandi Parriott; Brittney Potter; Rick Sciotti; Anchalee Tangteung; Geoffrey S. Dow

Ketotifen is known to exhibit antimalarial activity in mouse and monkey malaria models. However, the low plasma levels and short half life of the drug do not adequately explain its in vivo efficacy. We synthesized most of the known metabolites of ketotifen and evaluated their antimalarial activity and pharmacokinetics in mice. Norketotifen, the de-methylated metabolite of ketotifen, was a more potent antimalarial in vitro as compared to ketotifen, and exhibited equivalent activity in vivo against asexual blood and developing liver-stage parasites. After ketotifen dosing, norketotifen levels were much higher than ketotifen relative to the IC50s of the compounds against Plasmodium falciparum in vitro. The data support the notion that the antimalarial activity of ketotifen in mice is mediated through norketotifen.


Bioorganic & Medicinal Chemistry | 2011

New imidazolidinedione derivatives as antimalarial agents

Liang Zhang; Ramadas Sathunuru; ThuLan Luong; Victor Melendez; Michael P. Kozar; Ai J. Lin

A series of new N-alky- and N-alkoxy-imidazolidinediones was prepared and assessed for prophylactic and radical curative activities in mouse and Rhesus monkey models. New compounds are generally metabolically stable, weakly active in vitro against Plasmodium falciparum clones (D6 and W2) and in mice infected with Plasmodium berghei sporozoites. Representative compounds 8e and 9c showed good causal prophylactic activity in Rhesus monkeys dosed 30 mg/kg/day for 3 consecutive days by IM, delayed patency for 19-21 days and 54-86 days, respectively, as compared to the untreated control. By oral, 9c showed only marginal activity in causal prophylactic and radical curative tests at 50 mg/kg/day×3 and 30 mg/kg/day×7 plus chloroquine 10 mg/kg for 7 days, respectively.


Nanomedicine: Nanotechnology, Biology and Medicine | 2014

Nanoparticle formulations of decoquinate increase antimalarial efficacy against liver stage Plasmodium infections in mice

Hongxing Wang; Qigui Li; Sean Reyes; Jing Zhang; Qiang Zeng; Ping Zhang; Lisa Xie; Patricia J. Lee; Norma Roncal; Victor Melendez; Mark Hickman; Michael P. Kozar

UNLABELLED Decoquinate has potent activity against both Plasmodium hepatic development and red cell replication when tested in vitro. Decoquinate, however, is practically insoluble in water. To achieve its maximal in vivo efficacy, we generated nanoparticle formulations of decoquinate with a mean particle size less than 400 nm. Three separate preparations at doses of decoquinate 0.5-5 mg/kg were examined in mice infected with Plasmodium berghei. Oral administration of nanoparticle decoquinate at a dose of 1.25 mg/kg effectively inhibited the liver-stage parasite growth and provided complete causal prophylactic protection. This efficacy is 15 fold greater than that observed for microparticle decoquinate, which requires minimal dose of 20 mg/kg for the same inhibitory effect. Further in vitro studies utilizing dose-response assays revealed that decoquinate nanoformulation was substantially more potent than decoquinate microsuspension in killing both liver and blood stage malarial parasites, proving its potential for therapeutic development. FROM THE CLINICAL EDITOR In this study, a nanoparticle formulation of decoquinate is shown to have superior bioavailability and efficacy in a mouse model of malaria, paving the way to the development of novel, potentially less toxic and more effective therapeutics to combat a disease that still has an enormous impact on a global scale despite the available partially effective therapies.

Collaboration


Dive into the Michael P. Kozar's collaboration.

Top Co-Authors

Avatar

Victor Melendez

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar

Ai J. Lin

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar

Jason Sousa

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar

Qigui Li

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar

Brandon S. Pybus

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar

Alan J. Magill

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar

Diana Caridha

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar

Erin E. Milner

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar

Geoffrey S. Dow

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar

Jay Moon

Walter Reed Army Institute of Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge