Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael P. Quaile is active.

Publication


Featured researches published by Michael P. Quaile.


Circulation-heart Failure | 2012

Differential Expression of PDE5 in Failing and Nonfailing Human Myocardium

Xiaoyin Shan; Michael P. Quaile; Jeffery K. Monk; Benjamin French; Thomas P. Cappola; Kenneth B. Margulies

Background— Recognizing that inhibitors of phosphodiesterase type 5 (PDE5) are increasingly employed in patients with pulmonary hypertension and right ventricular (RV) failure, we examined PDE5 expression in the human RV and its impact on myocardial contractility. Methods and Results— Tissue extracts from the RV of 20 patients were assayed for PDE5 expression using immunoblot and immunohistochemical staining. Tissues were selected from groups of nonfailing organ donors and transplant recipients with endstage ischemic cardiomyopathy or idiopathic dilated cardiomyopathy. Among dilated cardiomyopathy patients, subgroups with mild or severe RV dysfunction and prior left ventricular assist devices were analyzed separately. Our results showed that PDE5 abundance increased more than 4-fold in the RVs of the ischemic cardiomyopathy compared with the nonfailing group. In dilated cardiomyopathy, PDE5 upregulation was more moderate and varied with the severity of RV dysfunction. Immunohistochemical staining confirmed that cardiac myocytes contributed to the upregulation in the failing hearts. In functional studies, PDE5 inhibition produced little change in developed force in RV trabeculae from nonfailing hearts but produced a moderate increase in RV trabeculae from failing hearts. Conclusions— Our results showed the etiology- and severity-dependent upregulation of myocyte PDE5 expression in the RV and the impact of this upregulation on myocardial contractility. These findings suggest that RV PDE5 expression could contribute to the pathogenesis of RV failure, and direct myocardial responses to PDE5 inhibition may modulate the indirect responses mediated by RV afterload reduction.


Journal of Molecular and Cellular Cardiology | 2008

Claudin-5 levels are reduced in human end-stage cardiomyopathy.

Tessily A. Mays; Philip F. Binkley; Amanda Lesinski; Amit A. Doshi; Michael P. Quaile; Kenneth B. Margulies; Paul M. L. Janssen; Jill A. Rafael-Fortney

Claudin-5 is a transmembrane cell junction protein that is a component of tight junctions in endothelial cell layers. We have previously shown that claudin-5 also localizes to lateral membranes of murine cardiomyocytes at their junction with the extracellular matrix. Claudin-5 levels are specifically reduced in myocytes from a mouse model of muscular dystrophy with cardiomyopathy. To establish whether claudin-5 is similarly specifically reduced in human cardiomyopathy, we compared the levels of claudin-5 with other cell junction proteins in 62 cardiomyopathic end-stage explant samples. We show that claudin-5 levels are reduced in at least 60% of patient samples compared with non-failing controls. Importantly, claudin-5 reductions can be independent of connexin-43, a gap junction protein previously reported to be reduced in failing heart samples. Other cell junction proteins including alpha-catenin, beta-catenin, gamma-catenin, desmoplakin, and N-cadherin are reduced in only a small number of failing samples and only in combination with reduced claudin-5 or connexin-43 levels. We also show that reduced claudin-5 levels can be present independently from dystrophin alterations, which are known to be capable of causing and resulting from cardiomyopathy. These data are the first to show alterations of a tight junction protein in human cardiomyopathy samples and suggest that claudin-5 may participate in novel mechanisms in the pathway to end-stage heart failure.


Toxicological Sciences | 2011

An Initial Characterization of N-Terminal-Proatrial Natriuretic Peptide in Serum of Sprague Dawley Rats

Heidi M. Colton; Alan H. Stokes; Lawrence W. Yoon; Michael P. Quaile; Paul J. Novak; James Greg Falls; Carie L. Kimbrough; Neal F. Cariello; Holly L. Jordan; Brian R. Berridge

In the clinical setting, natriuretic peptides (NPs) have proven to be reliable noninvasive markers for diagnostic, prognostic, and therapeutic monitoring of heart failure. Given their proven utility in humans, NPs are potential candidates for translational biomarkers during drug development to detect drug-induced hemodynamic stress resulting in cardiac hypertrophy in preclinical species. We evaluated the intra- and interassay precision and the stability of serum N-terminal-proatrial natriuretic peptide (NT-proANP) using a commercially available enzyme-linked immunoassay (EIA). We then measured NT-proANP concentrations in 532 serum samples from 337 male Crl:CD(SD) rats with or without pressure-induced cardiac hypertrophy. Additionally, we established a reference range using samples from control animals across multiple studies. The data demonstrate that the NT-proANP EIA is a robust and reproducible assay for the measurement of NT-proANP. The noninvasive translational utility, minimal sample volume requirement, and the lack of existing hypertrophic biomarkers in the male rat make NT-proANP an excellent candidate for further interrogation as a biomarker of cardiac hypertrophy in preclinical toxicology investigations.


Circulation-heart Failure | 2009

Direct Inotropic Effects of Exogenous and Endogenous Urotensin-IICLINICAL PERSPECTIVE

Michael P. Quaile; Hajime Kubo; Carie L. Kimbrough; Stephen A. Douglas; Kenneth B. Margulies

Background—Urotensin-II (U-II) is an endogenous peptide upregulated in failing hearts. To date, insights into the myocardial actions of U-II have been obscured by its potent vasoconstrictor effects and interspecies differences in physiological responses to U-II. Methods and Results—We examined the direct effects of exogenous U-II on in vitro contractility in nonfailing and failing human myocardial trabeculae (n=47). Rapid cooling contractures (RCC) were used to examine sarcoplasmic reticulum Ca2+ load. In nonfailing myocardium, exogenous U-II increased developed force (DF), rates of force generation and decline and RCC amplitude suggesting increased sarcoplasmic reticulum Ca2+ load. In isolated myocyte suspensions from nonfailing hearts, U-II increased phospholamban phosphorylation. In failing myocardium, exogenous U-II reduced DF and rates of force generation and decline without a significant change in RCC amplitude in trabeculae or a change in phospholamban phosphorylation in myocytes. To examine the effects of endogenous U-II, we administered the peptidic U-II receptor antagonist (UT-A) GSK248451A to isolated trabeculae. UT-A induced a decrease in DF in nonfailing myocardium and an increase in DF in failing myocardium. UT-A increased RCC amplitude slightly in both nonfailing and failing myocardium. During ongoing UT-A, exogenous U-II had little effect on DF and RCC amplitude, confirming effective receptor blockade. Conclusions—U-II modulates contractility independent of vasoconstriction with opposite effects in failing and nonfailing hearts. Positive inotropic responses to UT-A alone suggests that increased endogenous U-II constrains contractility in failing hearts via an autocrine or paracrine mechanism. These findings support a potential therapeutic role for UT-A in heart failure.Background— Urotensin-II (U-II) is an endogenous peptide upregulated in failing hearts. To date, insights into the myocardial actions of U-II have been obscured by its potent vasoconstrictor effects and interspecies differences in physiological responses to U-II. Methods and Results— We examined the direct effects of exogenous U-II on in vitro contractility in nonfailing and failing human myocardial trabeculae (n=47). Rapid cooling contractures (RCC) were used to examine sarcoplasmic reticulum Ca2+ load. In nonfailing myocardium, exogenous U-II increased developed force (DF), rates of force generation and decline and RCC amplitude suggesting increased sarcoplasmic reticulum Ca2+ load. In isolated myocyte suspensions from nonfailing hearts, U-II increased phospholamban phosphorylation. In failing myocardium, exogenous U-II reduced DF and rates of force generation and decline without a significant change in RCC amplitude in trabeculae or a change in phospholamban phosphorylation in myocytes. To examine the effects of endogenous U-II, we administered the peptidic U-II receptor antagonist (UT-A) GSK248451A to isolated trabeculae. UT-A induced a decrease in DF in nonfailing myocardium and an increase in DF in failing myocardium. UT-A increased RCC amplitude slightly in both nonfailing and failing myocardium. During ongoing UT-A, exogenous U-II had little effect on DF and RCC amplitude, confirming effective receptor blockade. Conclusions— U-II modulates contractility independent of vasoconstriction with opposite effects in failing and nonfailing hearts. Positive inotropic responses to UT-A alone suggests that increased endogenous U-II constrains contractility in failing hearts via an autocrine or paracrine mechanism. These findings support a potential therapeutic role for UT-A in heart failure. Received October 26, 2007; accepted November 6, 2008.


Circulation-heart Failure | 2009

Direct Inotropic Effects of Exogenous and Endogenous Urotensin-II Divergent Actions in Failing and Nonfailing Human Myocardium

Michael P. Quaile; Hajime Kubo; Carie L. Kimbrough; Stephen A. Douglas; Kenneth B. Margulies

Background—Urotensin-II (U-II) is an endogenous peptide upregulated in failing hearts. To date, insights into the myocardial actions of U-II have been obscured by its potent vasoconstrictor effects and interspecies differences in physiological responses to U-II. Methods and Results—We examined the direct effects of exogenous U-II on in vitro contractility in nonfailing and failing human myocardial trabeculae (n=47). Rapid cooling contractures (RCC) were used to examine sarcoplasmic reticulum Ca2+ load. In nonfailing myocardium, exogenous U-II increased developed force (DF), rates of force generation and decline and RCC amplitude suggesting increased sarcoplasmic reticulum Ca2+ load. In isolated myocyte suspensions from nonfailing hearts, U-II increased phospholamban phosphorylation. In failing myocardium, exogenous U-II reduced DF and rates of force generation and decline without a significant change in RCC amplitude in trabeculae or a change in phospholamban phosphorylation in myocytes. To examine the effects of endogenous U-II, we administered the peptidic U-II receptor antagonist (UT-A) GSK248451A to isolated trabeculae. UT-A induced a decrease in DF in nonfailing myocardium and an increase in DF in failing myocardium. UT-A increased RCC amplitude slightly in both nonfailing and failing myocardium. During ongoing UT-A, exogenous U-II had little effect on DF and RCC amplitude, confirming effective receptor blockade. Conclusions—U-II modulates contractility independent of vasoconstriction with opposite effects in failing and nonfailing hearts. Positive inotropic responses to UT-A alone suggests that increased endogenous U-II constrains contractility in failing hearts via an autocrine or paracrine mechanism. These findings support a potential therapeutic role for UT-A in heart failure.Background— Urotensin-II (U-II) is an endogenous peptide upregulated in failing hearts. To date, insights into the myocardial actions of U-II have been obscured by its potent vasoconstrictor effects and interspecies differences in physiological responses to U-II. Methods and Results— We examined the direct effects of exogenous U-II on in vitro contractility in nonfailing and failing human myocardial trabeculae (n=47). Rapid cooling contractures (RCC) were used to examine sarcoplasmic reticulum Ca2+ load. In nonfailing myocardium, exogenous U-II increased developed force (DF), rates of force generation and decline and RCC amplitude suggesting increased sarcoplasmic reticulum Ca2+ load. In isolated myocyte suspensions from nonfailing hearts, U-II increased phospholamban phosphorylation. In failing myocardium, exogenous U-II reduced DF and rates of force generation and decline without a significant change in RCC amplitude in trabeculae or a change in phospholamban phosphorylation in myocytes. To examine the effects of endogenous U-II, we administered the peptidic U-II receptor antagonist (UT-A) GSK248451A to isolated trabeculae. UT-A induced a decrease in DF in nonfailing myocardium and an increase in DF in failing myocardium. UT-A increased RCC amplitude slightly in both nonfailing and failing myocardium. During ongoing UT-A, exogenous U-II had little effect on DF and RCC amplitude, confirming effective receptor blockade. Conclusions— U-II modulates contractility independent of vasoconstriction with opposite effects in failing and nonfailing hearts. Positive inotropic responses to UT-A alone suggests that increased endogenous U-II constrains contractility in failing hearts via an autocrine or paracrine mechanism. These findings support a potential therapeutic role for UT-A in heart failure. Received October 26, 2007; accepted November 6, 2008.


Journal of Pharmacology and Experimental Therapeutics | 2004

Pharmacological Effects of ATI22-107 [2-(2-{2-[2-Chloro-4-(6-oxo-1,4,5,6-tetrahydro-pyridazin-3-yl)-phenoxy]-acetylamino}-ethoxymethyl)-4-(2-chloro-phenyl)-6-methyl-1,4-dihydro-pyridine-3,5-dicarboxylic Acid Dimethyl Ester)], a Novel Dual Pharmacophore, on Myocyte Calcium Cycling and Contractility

Albert S. Jung; Michael P. Quaile; Geoffrey D. Mills; Daniel P. Bednarik; Steven R. Houser; Kenneth B. Margulies

Historically, inhibitors of type III phosphodiesterases (PDE-III) have been effective inotropes in mammalian myocardium, but their clinical utility has been limited by adverse events, including arrhythmias that are considered to be due to Ca2+ overload. ATI22-107 [2-(2-{2-[2-chloro-4-(6-oxo-1,4,5,6-tetrahydro-pyridazin-3-yl)-phenoxy]-acetylamino}-ethoxymethyl)-4-(2-chlorophenyl)-6-methyl-1,4-dihydro-pyridine-3,5-dicarboxylic acid dimethyl ester)], a novel, dual pharmacophore compound, was designed to simultaneously inhibit the cardiac phosphodiesterase (PDE-III) and produce inotropic effects, whereas inhibiting the L-type calcium channel (LTCC) was designed to minimize increases in diastolic Ca2+. We compared the effects of ATI22-107 and enoximone, a pure PDE-III inhibitor, on the Fluo-3 calcium transient in normal feline ventricular myocytes and trabeculae. Enoximone-induced dose-dependent increases in peak [Ca2+]i, diastolic [Ca2+]i, T50, and T75. ATI22-107 demonstrated similar dose-dependent increases in peak [Ca2+]i at 300 nM and 1.0 μM doses, with no further increases at higher doses. Throughout the dosing range, ATI22-107 induced much smaller, if any, increases in diastolic [Ca2+]i, T25, and T75. Current measurement of LTCC via patch-clamp techniques revealed dose-dependent decreases in LTCC current with an increasing dose of ATI22-107, thereby validating the dual functionality of the drug that has been proposed in this study. Studies in isolated trabeculae demonstrated that enoximone-induced a dose-dependent augmentation of the entire force-frequency relation in normal myocardium, whereas augmentation of contractility was only observed at lower stimulation frequencies with ATI22-107. These results demonstrate the effects of the LTCC-antagonizing moiety of ATI22-107 and suggest that the novel simultaneous combination of PDE-III and LTCC inhibition by one molecule may produce a favorable profile of limited inotropy without detrimental effects of increased diastolic [Ca2+]i.


Amyloid | 2005

Regionally heterogeneous tissue mechanics in cardiac amyloidosis

Rebecca E. Petre; Michael P. Quaile; Karl Wendt; Steven R. Houser; Joyce Wald; Bruce I. Goldman; Kenneth B. Margulies

Objective. The goal of this study was to examine in vitro tissue stiffness and contractile performance in myocardial amyloidosis. Background. Primary systemic amyloidosis involves the deposition of amyloid protein in mesodermal tissues including the heart. Functional assessment of cardiac amyloidosis is usually performed using echocardiography. However, this technique does not involve assessment of preload-dependent contractile reserve (the Frank-Starling mechanism). Methods. At the time of heart transplantation, isolated myocardial trabeculae were dissected from the right ventricle of a patient with primary systemic amyloidosis. In vitro length-tension experiments were performed and trabeculae were subsequently fixed, sectioned and stained with crystal violet to determine amyloid deposition. Results. Among the nine trabeculae capable of generating force transients, various combinations of myocardial stiffness and contractile performance were observed including normal stiffness and contractility, severely increased stiffness with impaired contractility and hybrid patterns. Histological analysis demonstrated varying degrees of amyloid deposition among sampled trabeculae. Conclusions. Our findings extend previous reports of functional heterogeneity among patients by demonstrating functional heterogeneity within a single patients heart. Our findings also highlight the functional interdependence of passive stiffness and systolic performance in the diseased myocardium and demonstrate the value of dynamic assessments of myocardial performance.


Journal of Pharmacology and Experimental Therapeutics | 2004

Pharmacological Effects of ATI22-107, a Novel Dual-Pharmacophore, on Myocyte Calcium Cycling and Contractility

Albert S. Jung; Michael P. Quaile; Geoffrey D. Mills; Daniel P. Bednarik; Steven R. Houser; Kenneth B. Margulies

Historically, inhibitors of type III phosphodiesterases (PDE-III) have been effective inotropes in mammalian myocardium, but their clinical utility has been limited by adverse events, including arrhythmias that are considered to be due to Ca2+ overload. ATI22-107 [2-(2-{2-[2-chloro-4-(6-oxo-1,4,5,6-tetrahydro-pyridazin-3-yl)-phenoxy]-acetylamino}-ethoxymethyl)-4-(2-chlorophenyl)-6-methyl-1,4-dihydro-pyridine-3,5-dicarboxylic acid dimethyl ester)], a novel, dual pharmacophore compound, was designed to simultaneously inhibit the cardiac phosphodiesterase (PDE-III) and produce inotropic effects, whereas inhibiting the L-type calcium channel (LTCC) was designed to minimize increases in diastolic Ca2+. We compared the effects of ATI22-107 and enoximone, a pure PDE-III inhibitor, on the Fluo-3 calcium transient in normal feline ventricular myocytes and trabeculae. Enoximone-induced dose-dependent increases in peak [Ca2+]i, diastolic [Ca2+]i, T50, and T75. ATI22-107 demonstrated similar dose-dependent increases in peak [Ca2+]i at 300 nM and 1.0 μM doses, with no further increases at higher doses. Throughout the dosing range, ATI22-107 induced much smaller, if any, increases in diastolic [Ca2+]i, T25, and T75. Current measurement of LTCC via patch-clamp techniques revealed dose-dependent decreases in LTCC current with an increasing dose of ATI22-107, thereby validating the dual functionality of the drug that has been proposed in this study. Studies in isolated trabeculae demonstrated that enoximone-induced a dose-dependent augmentation of the entire force-frequency relation in normal myocardium, whereas augmentation of contractility was only observed at lower stimulation frequencies with ATI22-107. These results demonstrate the effects of the LTCC-antagonizing moiety of ATI22-107 and suggest that the novel simultaneous combination of PDE-III and LTCC inhibition by one molecule may produce a favorable profile of limited inotropy without detrimental effects of increased diastolic [Ca2+]i.


Circulation-heart Failure | 2009

Direct Inotropic Effects of Exogenous and Endogenous Urotensin-IICLINICAL PERSPECTIVE: Divergent Actions in Failing and Nonfailing Human Myocardium

Michael P. Quaile; Hajime Kubo; Carie L. Kimbrough; Stephen A. Douglas; Kenneth B. Margulies

Background—Urotensin-II (U-II) is an endogenous peptide upregulated in failing hearts. To date, insights into the myocardial actions of U-II have been obscured by its potent vasoconstrictor effects and interspecies differences in physiological responses to U-II. Methods and Results—We examined the direct effects of exogenous U-II on in vitro contractility in nonfailing and failing human myocardial trabeculae (n=47). Rapid cooling contractures (RCC) were used to examine sarcoplasmic reticulum Ca2+ load. In nonfailing myocardium, exogenous U-II increased developed force (DF), rates of force generation and decline and RCC amplitude suggesting increased sarcoplasmic reticulum Ca2+ load. In isolated myocyte suspensions from nonfailing hearts, U-II increased phospholamban phosphorylation. In failing myocardium, exogenous U-II reduced DF and rates of force generation and decline without a significant change in RCC amplitude in trabeculae or a change in phospholamban phosphorylation in myocytes. To examine the effects of endogenous U-II, we administered the peptidic U-II receptor antagonist (UT-A) GSK248451A to isolated trabeculae. UT-A induced a decrease in DF in nonfailing myocardium and an increase in DF in failing myocardium. UT-A increased RCC amplitude slightly in both nonfailing and failing myocardium. During ongoing UT-A, exogenous U-II had little effect on DF and RCC amplitude, confirming effective receptor blockade. Conclusions—U-II modulates contractility independent of vasoconstriction with opposite effects in failing and nonfailing hearts. Positive inotropic responses to UT-A alone suggests that increased endogenous U-II constrains contractility in failing hearts via an autocrine or paracrine mechanism. These findings support a potential therapeutic role for UT-A in heart failure.Background— Urotensin-II (U-II) is an endogenous peptide upregulated in failing hearts. To date, insights into the myocardial actions of U-II have been obscured by its potent vasoconstrictor effects and interspecies differences in physiological responses to U-II. Methods and Results— We examined the direct effects of exogenous U-II on in vitro contractility in nonfailing and failing human myocardial trabeculae (n=47). Rapid cooling contractures (RCC) were used to examine sarcoplasmic reticulum Ca2+ load. In nonfailing myocardium, exogenous U-II increased developed force (DF), rates of force generation and decline and RCC amplitude suggesting increased sarcoplasmic reticulum Ca2+ load. In isolated myocyte suspensions from nonfailing hearts, U-II increased phospholamban phosphorylation. In failing myocardium, exogenous U-II reduced DF and rates of force generation and decline without a significant change in RCC amplitude in trabeculae or a change in phospholamban phosphorylation in myocytes. To examine the effects of endogenous U-II, we administered the peptidic U-II receptor antagonist (UT-A) GSK248451A to isolated trabeculae. UT-A induced a decrease in DF in nonfailing myocardium and an increase in DF in failing myocardium. UT-A increased RCC amplitude slightly in both nonfailing and failing myocardium. During ongoing UT-A, exogenous U-II had little effect on DF and RCC amplitude, confirming effective receptor blockade. Conclusions— U-II modulates contractility independent of vasoconstriction with opposite effects in failing and nonfailing hearts. Positive inotropic responses to UT-A alone suggests that increased endogenous U-II constrains contractility in failing hearts via an autocrine or paracrine mechanism. These findings support a potential therapeutic role for UT-A in heart failure. Received October 26, 2007; accepted November 6, 2008.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2007

Sex-based differences in myocardial contractile reserve

Rebecca E. Petre; Michael P. Quaile; Eric I. Rossman; Sarah J. Ratcliffe; Beth Bailey; Steven R. Houser; Kenneth B. Margulies

Collaboration


Dive into the Michael P. Quaile's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge