Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael P. Shakarjian is active.

Publication


Featured researches published by Michael P. Shakarjian.


Toxicological Sciences | 2010

Mechanisms Mediating the Vesicant Actions of Sulfur Mustard after Cutaneous Exposure

Michael P. Shakarjian; Diane E. Heck; Joshua P. Gray; Patrick J. Sinko; Marion K. Gordon; Robert P. Casillas; Ned D. Heindel; Donald R. Gerecke; Debra L. Laskin; Jeffrey D. Laskin

Sulfur mustard (SM), a chemical weapon first employed during World War I, targets the skin, eyes, and lung. It remains a significant military and civilian threat. The characteristic response of human skin to SM involves erythema of delayed onset, followed by edema with inflammatory cell infiltration, the appearance of large blisters in the affected area, and a prolonged healing period. Several in vivo and in vitro models have been established to understand the pathology and investigate the mechanism of action of this vesicating agent in the skin. SM is a bifunctional alkylating agent which reacts with many targets including lipids, proteins, and DNA, forming both intra- and intermolecular cross-links. Despite the relatively nonselective chemical reactivity of this agent, basal keratinocytes are more sensitive, and blistering involves detachment of these cells from their basement membrane adherence zones. The sequence and manner in which these cells die and detach is still unresolved. Much has been discovered over the past two decades with respect to the mechanisms of SM-induced cytotoxicity and the intracellular and extracellular targets of this vesicant. In this review, the effects of SM exposure on the skin are described, as well as potential mechanisms mediating its actions. Successful therapy for SM poisoning will depend on following new mechanistic leads to develop drugs that target one or more of its sites of action.


Pharmaceutical Research | 2006

Induction of Heme Oxygenase-1 (HO-1) and NAD[P]H: Quinone Oxidoreductase 1 (NQO1) by a Phenolic Antioxidant, Butylated Hydroxyanisole (BHA) and Its Metabolite, tert-Butylhydroquinone (tBHQ) in Primary-Cultured Human and Rat Hepatocytes

Young-Sam Keum; Yong-Hae Han; Celine Liew; Jung-Hwan Kim; Changjiang Xu; Xiaoling Yuan; Michael P. Shakarjian; Saeho Chong; Ah-Ng Tony Kong

PurposeThis study was aimed to investigate the effects of a phenolic antioxidant, butylated hydroxyanisole (BHA) and its metabolite, tert-butylhydroquinone (tBHQ) on the induction of HO-1, NQO1 and Nrf2 proteins and their regulatory mechanisms in primary-cultured hepatocytes.MethodsAfter exposure of BHA and tBHQ to primary-cultured rat and human hepatocytes and mouse neonatal fibroblasts (MFs), Western blot, semi-quantitative RT-PCR and microarray analysis were conducted.ResultsInduction of HO-1, NQO1 and Nrf2 proteins and activation of ERK1/2 and JNK1/2 were observed after BHA and tBHQ treatments in primary-cultured rat and human hepatocytes. Semi-quantitative RT-PCR study and microarray analysis revealed that HO-1 and NQO1 were transcriptionally activated in primary-cultured rat hepatocytes and a substantial transcriptional activation, including HO-1 occurred in primary-cultured human hepatocytes after BHA treatment. Whereas BHA failed to induce HO-1 in wild-type and Nrf2 knock-out MFs, tBHQ strongly induced HO-1 in wild-type, but not in Nrf2 knock-out MFs.ConclusionsOur data demonstrate that both BHA and tBHQ are strong chemical inducers of HO-1, NQO1 and Nrf2 proteins in primary-cultured human and rat hepatocytes with the activation of MAPK ERK1/2 and JNK1/2. However, in MFs, BHA failed to induce HO-1, whereas tBHQ strongly induced HO-1 in Nrf2 wild-type but not in Nrf2 knock-out, suggesting that Nrf2 is indispensable for tBHQ-induced HO-1 in MF.


Annals of the New York Academy of Sciences | 2010

Mechanisms of oxidant generation by catalase.

Diane E. Heck; Michael P. Shakarjian; Hong Duck Kim; Jeffrey D. Laskin; Anna M. Vetrano

The enzyme catalase converts solar radiation into reactive oxidant species (ROS). In this study, we report that several bacterial catalases (hydroperoxidases, HP), including Escherichia coli HP‐I and HP‐II also generate reactive oxidants in response to ultraviolet B light (UVB). HP‐I and HP‐II are identical except for the presence of NADPH. We found that only one of the catalases, HPI, produces oxidants in response to UVB light, indicating a potential role for the nucleotide in ROS production. This prompts us to speculate that NADPH may act as a cofactor regulating ROS generation by mammalian catalases. Structural analysis of the NADPH domains of several mammalian catalases revealed that the nucleotide is bound in a constrained conformation and that UVB irradiation induces NADPH oxidation and positional changes. Biochemical and kinetic analysis indicate that ROS formation by the enzyme is enhanced by oxidation of the cofactor. Conformational changes following absorption of UVB light by catalase NADPH have the potential to facilitate ROS production by the enzyme.


Toxicology and Applied Pharmacology | 2008

UVB light upregulates prostaglandin synthases and prostaglandin receptors in mouse keratinocytes

Adrienne T. Black; Joshua P. Gray; Michael P. Shakarjian; Vladimir Mishin; Debra L. Laskin; Diane E. Heck; Jeffrey D. Laskin

Prostaglandins belong to a class of cyclic lipid-derived mediators synthesized from arachidonic acid via COX-1, COX-2 and various prostaglandin synthases. Members of this family include prostaglandins such as PGE(2), PGF(2alpha), PGD(2) and PGI(2) (prostacyclin) as well as thromboxane. In the present studies we analyzed the effects of UVB on prostaglandin production and prostaglandin synthase expression in primary cultures of undifferentiated and calcium-differentiated mouse keratinocytes. Both cell types were found to constitutively synthesize PGE(2), PGD(2) and the PGD(2) metabolite PGJ(2). Twenty-four hours after treatment with UVB (25 mJ/cm(2)), production of PGE(2) and PGJ(2) increased, while PGD(2) production decreased. This was associated with increased expression of COX-2 mRNA and protein. UVB (2.5-25 mJ/cm(2)) also caused marked increases in mRNA expression for the prostanoid synthases PGDS, mPGES-1, mPGES-2, PGFS and PGIS, as well as expression of receptors for PGE(2) (EP1 and EP2), PGD(2) (DP and CRTH2) and prostacyclin (IP). UVB was more effective in inducing COX-2 and DP in differentiated cells and EP1 and IP in undifferentiated cells. UVB readily activated keratinocyte PI-3-kinase (PI3K)/Akt, JNK and p38 MAP signaling pathways which are known to regulate COX-2 expression. While inhibition of PI3K suppressed UVB-induced mPGES-1 and CRTH2 expression, JNK inhibition suppressed mPGES-1, PGIS, EP2 and CRTH2, and p38 kinase inhibition only suppressed EP1 and EP2. These data indicate that UVB modulates expression of prostaglandin synthases and receptors by distinct mechanisms. Moreover, both the capacity of keratinocytes to generate prostaglandins and their ability to respond to these lipid mediators are stimulated by exposure to UVB.


Toxicology and Applied Pharmacology | 2014

Modulation of keratinocyte expression of antioxidants by 4-hydroxynonenal, a lipid peroxidation end product.

Ruijin Zheng; Diane E. Heck; Vladimir Mishin; Adrienne T. Black; Michael P. Shakarjian; Ah-Ng Tony Kong; Debra L. Laskin; Jeffrey D. Laskin

4-Hydroxynonenal (4-HNE) is a lipid peroxidation end product generated in response to oxidative stress in the skin. Keratinocytes contain an array of antioxidant enzymes which protect against oxidative stress. In these studies, we characterized 4-HNE-induced changes in antioxidant expression in mouse keratinocytes. Treatment of primary mouse keratinocytes and PAM 212 keratinocytes with 4-HNE increased mRNA expression for heme oxygenase-1 (HO-1), catalase, NADPH:quinone oxidoreductase (NQO1) and glutathione S-transferase (GST) A1-2, GSTA3 and GSTA4. In both cell types, HO-1 was the most sensitive, increasing 86-98 fold within 6h. Further characterization of the effects of 4-HNE on HO-1 demonstrated concentration- and time-dependent increases in mRNA and protein expression which were maximum after 6h with 30 μM. 4-HNE stimulated keratinocyte Erk1/2, JNK and p38 MAP kinases, as well as PI3 kinase. Inhibition of these enzymes suppressed 4-HNE-induced HO-1 mRNA and protein expression. 4-HNE also activated Nrf2 by inducing its translocation to the nucleus. 4-HNE was markedly less effective in inducing HO-1 mRNA and protein in keratinocytes from Nrf2-/- mice, when compared to wild type mice, indicating that Nrf2 also regulates 4-HNE-induced signaling. Western blot analysis of caveolar membrane fractions isolated by sucrose density centrifugation demonstrated that 4-HNE-induced HO-1 is localized in keratinocyte caveolae. Treatment of the cells with methyl-β-cyclodextrin, which disrupts caveolar structure, suppressed 4-HNE-induced HO-1. These findings indicate that 4-HNE modulates expression of antioxidant enzymes in keratinocytes, and that this can occur by different mechanisms. Changes in expression of keratinocyte antioxidants may be important in protecting the skin from oxidative stress.


Toxicology and Applied Pharmacology | 2012

Differential antagonism of tetramethylenedisulfotetramine-induced seizures by agents acting at NMDA and GABAA receptors

Michael P. Shakarjian; Jana Velíšková; Patric K. Stanton; Libor Velíšek

Tetramethylenedisulfotetramine (TMDT) is a highly lethal neuroactive rodenticide responsible for many accidental and intentional poisonings in mainland China. Ease of synthesis, water solubility, potency, and difficulty to treat make TMDT a potential weapon for terrorist activity. We characterized TMDT-induced convulsions and mortality in male C57BL/6 mice. TMDT (ip) produced a continuum of twitches, clonic, and tonic-clonic seizures decreasing in onset latency and increasing in severity with increasing dose; 0.4mg/kg was 100% lethal. The NMDA antagonist, ketamine (35mg/kg) injected ip immediately after the first TMDT-induced seizure, did not change number of tonic-clonic seizures or lethality, but increased the number of clonic seizures. Doubling the ketamine dose decreased tonic-clonic seizures and eliminated lethality through a 60min observation period. Treating mice with another NMDA antagonist, MK-801, 0.5 or 1mg/kg ip, showed similar effects as low and high doses of ketamine, respectively, and prevented lethality, converting status epilepticus EEG activity to isolated interictal discharges. Treatment with these agents 15min prior to TMDT administration did not increase their effectiveness. Post-treatment with the GABA(A) receptor allosteric enhancer diazepam (5mg/kg) greatly reduced seizure manifestations and prevented lethality 60min post-TMDT, but ictal events were evident in EEG recordings and, hours post-treatment, mice experienced status epilepticus and died. Thus, TMDT is a highly potent and lethal convulsant for which single-dose benzodiazepine treatment is inadequate in managing electrographic seizures or lethality. Repeated benzodiazepine dosing or combined application of benzodiazepines and NMDA receptor antagonists is more likely to be effective in treating TMDT poisoning.


Wound Repair and Regeneration | 2013

Acceleration of cutaneous wound healing by brassinosteroids.

Debora Esposito; Thirumurugan Rathinasabapathy; Barbara Schmidt; Michael P. Shakarjian; Slavko Komarnytsky; Ilya Raskin

Brassinosteroids are plant growth hormones involved in cell growth, division, and differentiation. Their effects in animals are largely unknown, although recent studies showed that the anabolic properties of brassinosteroids are possibly mediated through the phosphoinositide 3‐kinase/protein kinase B signaling pathway. Here, we examined biological activity of homobrassinolide (HB) and its synthetic analogues in in vitro proliferation and migration assays in murine fibroblast and primary keratinocyte cell culture. HB stimulated fibroblast proliferation and migration and weakly induced keratinocyte proliferation in vitro. The effects of topical HB administration on progression of wound closure were further tested in the mouse model of cutaneous wound healing. C57BL/6J mice were given a full‐thickness dermal wound, and the rate of wound closure was assessed daily for 10 days, with adenosine receptor agonist CGS‐21680 as a positive control. Topical application of brassinosteroid significantly reduced wound size and accelerated wound healing in treated animals. mRNA levels of transforming growth factor beta and intercellular adhesion molecule 1 were significantly lower, while tumor necrosis factor alpha was nearly suppressed in the wounds from treated mice. Our data suggest that topical application of brassinosteroids accelerates wound healing by positively modulating inflammatory and reepithelialization phases of the wound repair process, in part by enhancing Akt signaling in the skin at the edges of the wound and enhancing migration of fibroblasts in the wounded area. Targeting this signaling pathway with brassinosteroids may represent a promising approach to the therapy of delayed wound healing.


Neurotoxicology | 2015

Combined diazepam and MK-801 therapy provides synergistic protection from tetramethylenedisulfotetramine-induced tonic-clonic seizures and lethality in mice.

Michael P. Shakarjian; Mahil S. Ali; Jana Velíšková; Patric K. Stanton; Diane E. Heck; Libor Velíšek

The synthetic rodenticide, tetramethylenedisulfotetramine (TMDT), is a persistent and highly lethal GABA-gated Cl(-) channel blocker. TMDT is clandestinely produced, remains popular in mainland China, and causes numerous unintentional and deliberate poisonings worldwide. TMDT is odorless, tasteless, and easy to manufacture, features that make it a potential weapon of terrorism. There is no effective treatment. We previously characterized the effects of TMDT in C57BL/6 mice and surveyed efficacies of GABAergic and glutamatergic anticonvulsant treatments. At 0.4 mg/kg i.p., TMDT produced neurotoxic symptomatology consisting of twitches, clonic and tonic-clonic seizures, often progressing to status epilepticus and death. If administered immediately after the occurrence of the first clonic seizure, the benzodiazepine diazepam (DZP) effectively prevented all subsequent seizure symptoms, whereas the NMDA receptor antagonist dizocilpine (MK-801) primarily prevented tonic-clonic seizures. The latter agent, however, appeared to be more effective at preventing delayed death. The present study further explored these phenomena, and characterized the therapeutic actions of DZP and MK-801 as combinations. Joint treatment with both DZP and MK-801 displayed synergistic protection against tonic-clonic seizures and 24 h lethality as determined by isobolographic analysis. Clonic seizures, however, remained poorly controlled. A modification of the treatment regimen, where DZP was followed 10 min later by MK-801, yielded a reduction in both types of seizures and improved overall outcome. Simultaneous monitoring of subjects via EEG and videography confirmed effectiveness of this sequential regimen. We conclude that TMDT blockage at GABAA receptors involves early activation of NMDA receptors, which contribute to persistent ictogenic activity. Our data predict that a sequential combination treatment with DZP followed by MK-801 will be superior to either individual therapy with, or simultaneous administration of, these two agents in treating TMDT poisoning.


Toxicological Sciences | 2016

Nrf2 Regulates the Sensitivity of Mouse Keratinocytes to Nitrogen Mustard via Multidrug Resistance-Associated Protein 1 (Mrp1)

Xia Wen; Kristin M. Bircsak; Lauren M. Aleksunes; Michael P. Shakarjian; Ah-Ng Tony Kong; Diane E. Heck; Debra L. Laskin; Jeffrey D. Laskin

Sulfur mustard and nitrogen mustard (mechlorethamine, HN2) are potent vesicants developed as chemical warfare agents. These electrophilic, bifunctional alkylating agents cause skin injury, including inflammation, edema, and blistering. HN2 covalently modifies macromolecules such as DNA, RNA, and proteins or is scavenged by glutathione, forming adducts that can contribute to toxicity. Multidrug resistance-associated protein 1 (Mrp1/MRP1) is a transmembrane ATPase known to efflux glutathione-conjugated electrophiles. In the present studies, we examined the effects of modulating Mrp1-mediated transport activity on the sensitivity of primary and PAM212 mouse keratinocytes to HN2. Primary keratinocytes, and to a lesser extent, PAM212 cells, express Mrp1 mRNA and protein and possess Mrp1 functional activity, as measured by calcein efflux. Sulforaphane, an activator of Nrf2, increased Mrp1 mRNA, protein, and functional activity in primary keratinocytes and PAM212 cells and decreased their sensitivity to HN2-induced growth inhibition (IC(50) = 1.4 and 4.8 µM in primary keratinocytes and 1 and 13 µM in PAM212 cells, in the absence and presence of sulforaphane, respectively). The Mrp1 inhibitor, MK-571, reversed the effects of sulforaphane on HN2-induced growth inhibition in both primary keratinocytes and PAM212 cells. In primary keratinocytes from Nrf2(-/-) mice, sulforaphane had no impact on Mrp1 expression or activity, or on sensitivity to HN2, demonstrating that its effects depend on Nrf2. These data suggest that Mrp1-mediated efflux is important in regulating HN2-induced keratinocyte growth inhibition. Enhancing HN2 efflux from keratinocytes may represent a novel strategy for mitigating vesicant-induced cytotoxicity.


Handbook of Toxicology of Chemical Warfare Agents (Second Edition) | 2015

Dermal Toxicity of Sulfur Mustard

Joshua P. Gray; Michael P. Shakarjian; Donald R. Gerecke; Robert P. Casillas

This chapter describes the dermal toxicity events of the alkylating agent, sulfur mustard [bis(2-chloroethyl) sulfide], which ultimately causes detachment of the epidermis from the dermis. Skin exposure to sulfur mustard (SM) starts a series of dermal toxicity events with severity determined in part by mediators of injury that regulate inflammation, immune responses, apoptosis, necrosis, and a number of signaling pathways. This complex series of events involves a host of normal skin responses to wounding that interact with, influence, and regulate each other. Each step of the injury process is described in detail and an in-depth comparison is made between SM-induced and other types of wound injury. Various in vitro and in vivo SM injury models are described and potential therapeutic countermeasures are identified.

Collaboration


Dive into the Michael P. Shakarjian's collaboration.

Top Co-Authors

Avatar

Diane E. Heck

New York Medical College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joshua P. Gray

United States Coast Guard Academy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge