Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joshua P. Gray is active.

Publication


Featured researches published by Joshua P. Gray.


Toxicological Sciences | 2010

Mechanisms Mediating the Vesicant Actions of Sulfur Mustard after Cutaneous Exposure

Michael P. Shakarjian; Diane E. Heck; Joshua P. Gray; Patrick J. Sinko; Marion K. Gordon; Robert P. Casillas; Ned D. Heindel; Donald R. Gerecke; Debra L. Laskin; Jeffrey D. Laskin

Sulfur mustard (SM), a chemical weapon first employed during World War I, targets the skin, eyes, and lung. It remains a significant military and civilian threat. The characteristic response of human skin to SM involves erythema of delayed onset, followed by edema with inflammatory cell infiltration, the appearance of large blisters in the affected area, and a prolonged healing period. Several in vivo and in vitro models have been established to understand the pathology and investigate the mechanism of action of this vesicating agent in the skin. SM is a bifunctional alkylating agent which reacts with many targets including lipids, proteins, and DNA, forming both intra- and intermolecular cross-links. Despite the relatively nonselective chemical reactivity of this agent, basal keratinocytes are more sensitive, and blistering involves detachment of these cells from their basement membrane adherence zones. The sequence and manner in which these cells die and detach is still unresolved. Much has been discovered over the past two decades with respect to the mechanisms of SM-induced cytotoxicity and the intracellular and extracellular targets of this vesicant. In this review, the effects of SM exposure on the skin are described, as well as potential mechanisms mediating its actions. Successful therapy for SM poisoning will depend on following new mechanistic leads to develop drugs that target one or more of its sites of action.


Free Radical Biology and Medicine | 2010

Application of the Amplex Red/Horseradish Peroxidase Assay to Measure Hydrogen Peroxide Generation by Recombinant Microsomal Enzymes

Vladimir Mishin; Joshua P. Gray; Diane E. Heck; Debra L. Laskin; Jeffrey D. Laskin

The formation of reactive oxygen species by the cytochrome P450 monooxygenase system is thought to be due to autoxidation of NADPH-cytochrome P450 reductase and the nonproductive decay of oxygen-bound cytochrome P450 intermediates. To characterize this process in recombinant microsomal enzymes, we used a highly sensitive hydrogen peroxide assay based on Amplex red oxidation. This assay is 20 times more sensitive (LLD=5.0pmol/assay and LLQ=30pmol/assay) than the standard ferrous thiocyanate assay for detection of hydrogen peroxide. We found low, but detectable, spontaneous generation of hydrogen peroxide by recombinant human NADPH-cytochrome P450 reductase complexes (0.09nmol hydrogen peroxide/min/100Units of NADPH-cytochrome P450 reductase). Significantly higher rates of hydrogen peroxide production were observed when recombinant cytochrome P450 enzymes were coexpressed with NADPH-cytochrome P450 reductase (0.31nmol of hydrogen peroxide/min/100Units of NADPH-cytochrome P450 reductase). This was independent of the addition of any exogenous cytochrome P450 substrates. These data demonstrate that cytochrome P450s are a major source of hydrogen peroxide in the recombinant cytochrome P450 monooxygenase system. Moreover, substrate binding is not required for the cytochrome P450s to generate reactive oxygen species.


Journal of Biological Chemistry | 2007

Paraquat Increases Cyanide-insensitive Respiration in Murine Lung Epithelial Cells by Activating an NAD(P)H:Paraquat Oxidoreductase IDENTIFICATION OF THE ENZYME AS THIOREDOXIN REDUCTASE

Joshua P. Gray; Diane E. Heck; Vladimir Mishin; Peter J. Smith; Jun-Yan Hong; Mona Thiruchelvam; Deborah A. Cory-Slechta; Debra L. Laskin; Jeffrey D. Laskin

Pulmonary fibrosis is one of the most severe consequences of exposure to paraquat, an herbicide that causes rapid alveolar inflammation and epithelial cell damage. Paraquat is known to induce toxicity in cells by stimulating oxygen utilization via redox cycling and the generation of reactive oxygen intermediates. However, the enzymatic activity mediating this reaction in lung cells is not completely understood. Using self-referencing microsensors, we measured the effects of paraquat on oxygen flux into murine lung epithelial cells. Paraquat (10–100 μm) was found to cause a 2–4-fold increase in cellular oxygen flux. The mitochondrial poisons cyanide, rotenone, and antimycin A prevented mitochondrial- but not paraquat-mediated oxygen flux into cells. In contrast, diphenyleneiodonium (10 μm), an NADPH oxidase inhibitor, blocked the effects of paraquat without altering mitochondrial respiration. NADPH oxidases, enzymes that are highly expressed in lung epithelial cells, utilize molecular oxygen to generate superoxide anion. We discovered that lung epithelial cells possess a distinct cytoplasmic diphenyleneiodonium-sensitive NAD(P)H:paraquat oxidoreductase. This enzyme utilizes oxygen, requires NADH or NADPH, and readily generates the reduced paraquat radical. Purification and sequence analysis identified this enzyme activity as thioredoxin reductase. Purified paraquat reductase from the cells contained thioredoxin reductase activity, and purified rat liver thioredoxin reductase or recombinant enzyme possessed paraquat reductase activity. Reactive oxygen intermediates and subsequent oxidative stress generated from this enzyme are likely to contribute to paraquat-induced lung toxicity.


PLOS ONE | 2009

Glucagon-Like Peptide-1 Induced Signaling and Insulin Secretion Do Not Drive Fuel and Energy Metabolism in Primary Rodent Pancreatic β-Cells

Marie-Line Peyot; Joshua P. Gray; Julien Lamontagne; Peter J. Smith; George G. Holz; S. R. Murthy Madiraju; Marc Prentki; Emma Heart

Background Glucagon like peptide-1 (GLP-1) and its analogue exendin-4 (Ex-4) enhance glucose stimulated insulin secretion (GSIS) and activate various signaling pathways in pancreatic β-cells, in particular cAMP, Ca2+ and protein kinase-B (PKB/Akt). In many cells these signals activate intermediary metabolism. However, it is not clear whether the acute amplification of GSIS by GLP-1 involves in part metabolic alterations and the production of metabolic coupling factors. Methodology/Prinicipal Findings GLP-1 or Ex-4 at high glucose caused release (∼20%) of the total rat islet insulin content over 1 h. While both GLP-1 and Ex-4 markedly potentiated GSIS in isolated rat and mouse islets, neither had an effect on β-cell fuel and energy metabolism over a 5 min to 3 h time period. GLP-1 activated PKB without changing glucose usage and oxidation, fatty acid oxidation, lipolysis or esterification into various lipids in rat islets. Ex-4 caused a rise in [Ca2+]i and cAMP but did not enhance energy utilization, as neither oxygen consumption nor mitochondrial ATP levels were altered. Conclusions/Significance The results indicate that GLP-1 barely affects β-cell intermediary metabolism and that metabolic signaling does not significantly contribute to GLP-1 potentiation of GSIS. The data also indicate that insulin secretion is a minor energy consuming process in the β-cell, and that the β-cell is different from most cell types in that its metabolic activation appears to be primarily governed by a “push” (fuel substrate driven) process, rather than a “pull” mechanism secondary to enhanced insulin release as well as to Ca2+, cAMP and PKB signaling.


Free Radical Biology and Medicine | 2011

Redox cycling and increased oxygen utilization contribute to diquat-induced oxidative stress and cytotoxicity in Chinese hamster ovary cells overexpressing NADPH-cytochrome P450 reductase

Karma C. Fussell; Joshua P. Gray; Vladimir Mishin; Peter J. Smith; Diane E. Heck; Jeffrey D. Laskin

Diquat and paraquat are nonspecific defoliants that induce toxicity in many organs including the lung, liver, kidney, and brain. This toxicity is thought to be due to the generation of reactive oxygen species (ROS). An important pathway leading to ROS production by these compounds is redox cycling. In this study, diquat and paraquat redox cycling was characterized using human recombinant NADPH-cytochrome P450 reductase, rat liver microsomes, and Chinese hamster ovary (CHO) cells constructed to overexpress cytochrome P450 reductase (CHO-OR) and wild-type control cells (CHO-WT). In redox cycling assays with recombinant cytochrome P450 reductase and microsomes, diquat was 10-40 times more effective at generating ROS compared to paraquat (K(M)=1.0 and 44.2μM, respectively, for H(2)O(2) generation by diquat and paraquat using recombinant enzyme, and 15.1 and 178.5μM, respectively for microsomes). In contrast, at saturating concentrations, these compounds showed similar redox cycling activity (V(max)≈6.0nmol H(2)O(2)/min/mg protein) for recombinant enzyme and microsomes. Diquat and paraquat also redox cycle in CHO cells. Significantly more activity was evident in CHO-OR cells than in CHO-WT cells. Diquat redox cycling in CHO cells was associated with marked increases in protein carbonyl formation, a marker of protein oxidation, as well as cellular oxygen consumption, measured using oxygen microsensors; greater activity was detected in CHO-OR cells than in CHO-WT cells. These data demonstrate that ROS formation during diquat redox cycling can generate oxidative stress. Enhanced oxygen utilization during redox cycling may reduce intracellular oxygen available for metabolic reactions and contribute to toxicity.


American Journal of Physiology-endocrinology and Metabolism | 2009

Role for malic enzyme, pyruvate carboxylation, and mitochondrial malate import in glucose-stimulated insulin secretion

Emma Heart; Gary W. Cline; Leon P. Collis; Rebecca L. Pongratz; Joshua P. Gray; Peter J. Smith

Pyruvate cycling has been implicated in glucose-stimulated insulin secretion (GSIS) from pancreatic beta-cells. The operation of some pyruvate cycling pathways is proposed to necessitate malate export from the mitochondria and NADP(+)-dependent decarboxylation of malate to pyruvate by cytosolic malic enzyme (ME1). Evidence in favor of and against a role of ME1 in GSIS has been presented by others using small interfering RNA-mediated suppression of ME1. ME1 was also proposed to account for methyl succinate-stimulated insulin secretion (MSSIS), which has been hypothesized to occur via succinate entry into the mitochondria in exchange for malate and subsequent malate conversion to pyruvate. In contrast to rat, mouse beta-cells lack ME1 activity, which was suggested to explain their lack of MSSIS. However, this hypothesis was not tested. In this report, we demonstrate that although adenoviral-mediated overexpression of ME1 greatly augments GSIS in rat insulinoma INS-1 832/13 cells, it does not restore MSSIS, nor does it significantly affect GSIS in mouse islets. The increase in GSIS following ME1 overexpression in INS-1 832/13 cells did not alter the ATP-to-ADP ratio but was accompanied by increases in malate and citrate levels. Increased malate and citrate levels were also observed after INS-1 832/13 cells were treated with the malate-permeable analog dimethyl malate. These data suggest that although ME1 overexpression augments anaplerosis and GSIS in INS-1 832/13 cells, it is not likely involved in MSSIS and GSIS in pancreatic islets.


Pediatric Research | 2010

Inflammatory Effects of Phthalates in Neonatal Neutrophils

Anna M. Vetrano; Debra L. Laskin; Faith Archer; Kirin Syed; Joshua P. Gray; Jeffrey D. Laskin; Nkiru Nwebube; Barry Weinberger

Hospitalized infants are exposed to numerous devices containing the plasticizer di-(2-ethylhexyl) phthalate. Urinary levels of the phthalate metabolite, mono-(2-ethylhexyl) phthalate (MEHP), are markedly elevated in premature infants. Phthalates inactivate peroxisome proliferator-activated receptor-γ (PPAR-γ), a nuclear transcription factor that mediates the resolution of inflammation, a process impaired in neonates. We speculate that this increases their susceptibility to MEHP, and this was analyzed. MEHP inhibited neutrophil apoptosis; neonatal cells were more sensitive than adult cells. In neonatal, but not in adult neutrophils, MEHP also inhibited chemotaxis, stimulated oxidative metabolism, and up-regulated expression of NADPH oxidase-1. In both adult and neonatal neutrophils, MEHP stimulated IL-1β and VEGF production, whereas IL-8 production was stimulated only in adult cells. In contrast, MEHP-inhibited production of MIP-1β by adult cells, and Regulated on Activation Normal T Cell Expressed and Secreted (RANTES) by neonatal neutrophils. The effects of MEHP on apoptosis and oxidative metabolism in neonatal cells were reversed by the PPAR-γ agonist, troglitazone. Whereas troglitazone had no effect on MEHP-induced alterations in inflammatory protein or chemokine production, constitutive IL-8 and MIP-1β production was reduced in adult neutrophils, and RANTES and MIP-1β in neonatal cells. These findings suggest that neonatal neutrophils are more sensitive to phthalate-mediated inhibition of PPAR-γ, which may be related to decreased anti-inflammatory signaling.


Toxicology and Applied Pharmacology | 2010

Inhibition of NADPH cytochrome P450 reductase by the model sulfur mustard vesicant 2-chloroethyl ethyl sulfide is associated with increased production of reactive oxygen species.

Joshua P. Gray; Vladimir Mishin; Diane E. Heck; Debra L. Laskin; Jeffrey D. Laskin

Inhalation of vesicants including sulfur mustard can cause significant damage to the upper airways. This is the result of vesicant-induced modifications of proteins important in maintaining the integrity of the lung. Cytochrome P450s are the major enzymes in the lung mediating detoxification of sulfur mustard and its metabolites. NADPH cytochrome P450 reductase is a flavin-containing electron donor for cytochrome P450. The present studies demonstrate that the sulfur mustard analog, 2-chloroethyl ethyl sulfide (CEES), is a potent inhibitor of human recombinant cytochrome P450 reductase, as well as native cytochrome P450 reductase from liver microsomes of saline and beta-naphthoflavone-treated rats, and cytochrome P450 reductase from type II lung epithelial cells. Using rat liver microsomes from beta-naphthoflavone-treated rats, CEES was found to inhibit CYP 1A1 activity. This inhibition was overcome by microsomal cytochrome P450 reductase from saline-treated rats, which lack CYP 1A1 activity, demonstrating that the CEES inhibitory activity was selective for cytochrome P450 reductase. Cytochrome P450 reductase also generates reactive oxygen species (ROS) via oxidation of NADPH. In contrast to its inhibitory effects on the reduction of cytochrome c and CYP1A1 activity, CEES was found to stimulate ROS formation. Taken together, these data demonstrate that sulfur mustard vesicants target cytochrome P450 reductase and that this effect may be an important mechanism mediating oxidative stress and lung injury.


Molecular Cancer Therapeutics | 2010

Distinct Roles of Cytochrome P450 Reductase in Mitomycin c Redox Cycling and Cytotoxicity

Yun Wang; Joshua P. Gray; Vladimir Mishin; Diane E. Heck; Debra L. Laskin; Jeffrey D. Laskin

Mitomycin c (MMC), a quinone-containing anticancer drug, is known to redox cycle and generate reactive oxygen species. A key enzyme mediating MMC redox cycling is cytochrome P450 reductase, a microsomal NADPH-dependent flavoenzyme. In the present studies, Chinese hamster ovary (CHO) cells overexpressing this enzyme (CHO-OR cells) and corresponding control cells (CHO-WT cells) were used to investigate the role of cytochrome P450 reductase in the actions of MMC. In lysates from both cell types, MMC was found to redox cycle and generate H2O2; this activity was greater in CHO-OR cells (Vmax = 1.2 ± 0.1 nmol H2O2/min/mg protein in CHO-WT cells versus 32.4 ± 3.9 nmol H2O2/min/mg protein in CHO-OR cells). MMC was also more effective in generating superoxide anion and hydroxyl radicals in CHO-OR cells, relative to CHO-WT cells. Despite these differences in MMC redox cycling, MMC-induced cytotoxicity, as measured by growth inhibition, was similar in the two cell types (IC50 = 72 ± 20 nmol/L for CHO-WT and 75 ± 23 nmol/L for CHO-OR cells), as was its ability to induce G2-M and S phase arrest. Additionally, in nine different tumor cell lines, although a strong correlation was observed between MMC-induced H2O2 generation and cytochrome P450 reductase activity, there was no relationship between redox cycling and cytotoxicity. Hypoxia, which stabilizes MMC radicals generated by redox cycling, also had no effect on the sensitivity of tumor cells to MMC-induced cytotoxicity. These data indicate that NADPH cytochrome P450 reductase–mediated MMC redox cycling is not involved in the cytotoxicity of this chemotherapeutic agent. Mol Cancer Ther; 9(6); 1852–63. ©2010 AACR.


Free Radical Biology and Medicine | 2008

Role of cytochrome P450 reductase in nitrofurantoin-induced redox cycling and cytotoxicity

Yun Wang; Joshua P. Gray; Vladimir Mishin; Diane E. Heck; Debra L. Laskin; Jeffrey D. Laskin

The one-electron reduction of redox-active chemotherapeutic agents generates highly toxic radical anions and reactive oxygen intermediates (ROI). A major enzyme catalyzing this process is cytochrome P450 reductase. Because many tumor cells highly express this enzyme, redox cycling of chemotherapeutic agents in these cells may confer selective antitumor activity. Nitrofurantoin is a commonly used redox-active antibiotic that possesses antitumor activity. In the present studies we determined whether nitrofurantoin redox cycling is correlated with cytochrome P450 reductase activity and cytotoxicity in a variety of cell lines. Recombinant cytochrome P450 reductase was found to support redox cycling of nitrofurantoin and to generate superoxide anion, hydrogen peroxide, and, in the presence of redox-active iron, hydroxyl radicals. This activity was NADPH dependent and inhibitable by diphenyleneiodonium, indicating a requirement for the flavin cofactors in the reductase. Nitrofurantoin-induced redox cycling was next analyzed in different cell lines varying in cytochrome P450 reductase activity including Chinese hamster ovary cells (CHO-OR) constructed to overexpress the enzyme. Nitrofurantoin-induced hydrogen peroxide production was 16-fold greater in lysates from CHO-OR cells than from control CHO cells. A strong correlation between cytochrome P450 reductase activity and nitrofurantoin-induced redox cycling among the cell lines was found. Unexpectedly, no correlation between nitrofurantoin-induced ROI production and cytotoxicity was observed. These data indicate that nitrofurantoin-induced redox cycling and subsequent generation of ROI are not sufficient to mediate cytotoxicity and that cytochrome P450 reductase is not a determinant of sensitivity to redox-active chemotherapeutic agents.

Collaboration


Dive into the Joshua P. Gray's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter J. Smith

Marine Biological Laboratory

View shared research outputs
Top Co-Authors

Avatar

Emma Heart

Marine Biological Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge