Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael R. Bruchas is active.

Publication


Featured researches published by Michael R. Bruchas.


Science | 2013

Injectable, Cellular-Scale Optoelectronics with Applications for Wireless Optogenetics

Tae-Il Kim; Jordan G. McCall; Yei Hwan Jung; Xian Huang; Edward R. Siuda; Yuhang Li; Jizhou Song; Young Min Song; Hsuan An Pao; Rak Hwan Kim; Chaofeng Lu; Sung Dan Lee; Il Sun Song; Gunchul Shin; Ream Al-Hasani; Stanley Kim; Meng Peun Tan; Yonggang Huang; Fiorenzo G. Omenetto; John A. Rogers; Michael R. Bruchas

The Smaller, the Better New semiconductor device technology enables injection of light-emitting diodes, silicon devices, actuators, and sensors at precisely controlled locations within biological tissues, such as the brain. Kim et al. (p. 211) show how wireless control of animal models using these technologies and the techniques of optogenetics provide new insights into basic behavioral neuroscience. Miniaturized and implantable light-emitting diodes offer precise and flexible control of neurons, when used in combination with optogenetics. Successful integration of advanced semiconductor devices with biological systems will accelerate basic scientific discoveries and their translation into clinical technologies. In neuroscience generally, and in optogenetics in particular, the ability to insert light sources, detectors, sensors, and other components into precise locations of the deep brain yields versatile and important capabilities. Here, we introduce an injectable class of cellular-scale optoelectronics that offers such features, with examples of unmatched operational modes in optogenetics, including completely wireless and programmed complex behavioral control over freely moving animals. The ability of these ultrathin, mechanically compliant, biocompatible devices to afford minimally invasive operation in the soft tissues of the mammalian brain foreshadow applications in other organ systems, with potential for broad utility in biomedical science and engineering.


The Journal of Neuroscience | 2008

The Dysphoric Component of Stress Is Encoded by Activation of the Dynorphin κ-Opioid System

Benjamin B. Land; Michael R. Bruchas; Julia C. Lemos; Mei Xu; Erica J. Melief; Charles Chavkin

Stress is a complex human experience having both positive and negative motivational properties. When chronic and uncontrollable, the adverse effects of stress on human health are considerable and yet poorly understood. Here, we report that the dysphoric properties of chronic stress are encoded by the endogenous opioid peptide dynorphin acting on specific stress-related neuronal circuits. Using different forms of stress presumed to evoke dysphoria in mice, we found that repeated forced swim and inescapable footshock both produced aversive behaviors that were blocked by a κ-opioid receptor (KOR) antagonist and absent in mice lacking dynorphin. Injection of corticotropin-releasing factor (CRF) or urocortin III, key mediators of the stress response, produced place aversion that was also blocked by dynorphin gene deletion or KOR antagonism. CRF-induced place aversion was blocked by the CRF2 receptor antagonist antisauvigine-30, but not by the CRF1 receptor antagonist antalarmin. In contrast, place aversion induced by the KOR agonist U50,488 was not blocked by antisauvigine-30. These results suggest that the aversive effects of stress were mediated by CRF2 receptor stimulation of dynorphin release and subsequent KOR activation. Using a phospho-selective antibody directed against the activated KOR to image sites of dynorphin action in the brain, we found that stress and CRF each caused dynorphin-dependent KOR activation in the basolateral amygdala, nucleus accumbens, dorsal raphe, and hippocampus. The convergence of stress-induced aversive inputs on the dynorphin system was unexpected, implicates dynorphin as a key mediator of dysphoria, and emphasizes κ-receptor antagonists as promising therapeutics.


Brain Research | 2010

The dynorphin/kappa opioid system as a modulator of stress-induced and pro-addictive behaviors

Michael R. Bruchas; Benjamin B. Land; Charles Chavkin

Stress is a complex experience that carries both aversive and motivating properties. Chronic stress causes an increase in the risk of depression, is well known to increase relapse of drug seeking behavior, and can adversely impact health. Several brain systems have been demonstrated to be critical in mediating the negative affect associated with stress, and recent evidence directly links the actions of the endogenous opioid neuropeptide dynorphin in modulating mood and increasing the rewarding effects of abused drugs. These results suggest that activation of the dynorphin/kappa opioid receptor (KOR) system is likely to play a major role in the pro-addictive effects of stress. This review explores the relationship between dynorphin and corticotropin-releasing factor (CRF) in the induction of dysphoria, the potentiation of drug seeking, and stress-induced reinstatement. We also provide an overview of the signal transduction events responsible for CRF and dynorphin/KOR-dependent behaviors. Understanding the recent work linking activation of CRF and dynorphin/KOR systems and their specific roles in brain stress systems and behavioral models of addiction provides novel insight to neuropeptide systems that regulate affective state.


Anesthesiology | 2011

Molecular Mechanisms of Opioid Receptor-dependent Signaling and Behavior

Ream Al-Hasani; Michael R. Bruchas

Opioid receptors have been targeted for the treatment of pain and related disorders for thousands of years and remain the most widely used analgesics in the clinic. Mu (μ), kappa (κ), and delta (δ) opioid receptors represent the originally classified receptor subtypes, with opioid receptor like-1 (ORL1) being the least characterized. All four receptors are G-protein coupled and activate inhibitory G proteins. These receptors form homo- and heterodimeric complexes and signal to kinase cascades and scaffold a variety of proteins.The authors discuss classic mechanisms and developments in understanding opioid tolerance and opioid receptor signaling and highlight advances in opioid molecular pharmacology, behavioral pharmacology, and human genetics. The authors put into context how opioid receptor signaling leads to the modulation of behavior with the potential for therapeutic intervention. Finally, the authors conclude there is a continued need for more translational work on opioid receptors in vivo.


Nature Biotechnology | 2015

Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics

Sung Il Park; Daniel S. Brenner; Gunchul Shin; Clinton D. Morgan; Bryan A. Copits; Ha Uk Chung; M. Pullen; Kyung Nim Noh; Steve Davidson; Soong Ju Oh; Jangyeol Yoon; Kyung In Jang; Vijay K. Samineni; Megan E. Norman; Jose G. Grajales-Reyes; Sherri K. Vogt; Saranya S. Sundaram; Kellie Wilson; Jeong Sook Ha; Renxiao Xu; Taisong Pan; Tae-Il Kim; Yonggang Huang; Michael C. Montana; Judith P. Golden; Michael R. Bruchas; Robert W. Gereau; John A. Rogers

Optogenetics allows rapid, temporally specific control of neuronal activity by targeted expression and activation of light-sensitive proteins. Implementation typically requires remote light sources and fiber-optic delivery schemes that impose considerable physical constraints on natural behaviors. In this report we bypass these limitations using technologies that combine thin, mechanically soft neural interfaces with fully implantable, stretchable wireless radio power and control systems. The resulting devices achieve optogenetic modulation of the spinal cord and peripheral nervous system. This is demonstrated with two form factors; stretchable film appliqués that interface directly with peripheral nerves, and flexible filaments that insert into the narrow confines of the spinal epidural space. These soft, thin devices are minimally invasive, and histological tests suggest they can be used in chronic studies. We demonstrate the power of this technology by modulating peripheral and spinal pain circuitry, providing evidence for the potential widespread use of these devices in research and future clinical applications of optogenetics outside the brain.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Activation of the kappa opioid receptor in the dorsal raphe nucleus mediates the aversive effects of stress and reinstates drug seeking

Benjamin B. Land; Michael R. Bruchas; Selena S. Schattauer; William J. Giardino; Megumi Aita; Daniel I. Messinger; Thomas S. Hnasko; Richard D. Palmiter; Charles Chavkin

Although stress has profound effects on motivated behavior, the underlying mechanisms responsible are incompletely understood. In this study we elucidate a functional pathway in mouse brain that encodes the aversive effects of stress and mediates stress-induced reinstatement of cocaine place preference (CPP). Activation of the dynorphin/kappa opioid receptor (KOR) system by either repeated stress or agonist produces conditioned place aversion (CPA). Because KOR inhibition of dopamine release in the mesolimbic pathway has been proposed to mediate the dysphoria underlying this response, we tested dopamine-deficient mice in this study and found that KOR agonist in these mice still produced CPA. However, inactivation of serotonergic KORs by injection of the KOR antagonist norBNI into the dorsal raphe nucleus (DRN), blocked aversive responses to the KOR agonist U50,488 and blocked stress-induced reinstatement of CPP. KOR knockout (KO) mice did not develop CPA to U50,488; however, lentiviral re-expression of KOR in the DRN of KOR KO mice restored place aversion. In contrast, lentiviral expression in DRN of a mutated form of KOR that fails to activate p38 MAPK required for KOR-dependent aversion, did not restore place aversion. DRN serotonergic neurons project broadly throughout the brain, but the inactivation of KOR in the nucleus accumbens (NAc) coupled with viral re-expression in the DRN of KOR KO mice demonstrated that aversion was encoded by a DRN to NAc projection. These results suggest that the adverse effects of stress may converge on the serotonergic system and offers an approach to controlling stress-induced dysphoria and relapse.


Journal of Biological Chemistry | 2006

Kappa Opioid Receptor Activation of p38 MAPK Is GRK3- and Arrestin-dependent in Neurons and Astrocytes

Michael R. Bruchas; Tara A. Macey; Janet Lowe; Charles Chavkin

AtT-20 cells expressing the wild-type kappa opioid receptor (KOR) increased phospho-p38 MAPK following treatment with the kappa agonist U50,488. The increase was blocked by the kappa antagonist norbinaltorphimine and not evident in untransfected cells. In contrast, U50,488 treatment of AtT-20 cells expressing KOR having alanine substituted for serine-369 (KSA) did not increase phospho-p38. Phosphorylation of serine 369 in the KOR carboxyl terminus by G-protein receptor kinase 3 (GRK3) was previously shown to be required for receptor desensitization, and the results suggest that p38 MAPK activation by KOR may require arrestin recruitment. This hypothesis was tested by transfecting arrestin3-(R170E), a dominant positive form of arrestin that does not require receptor phosphorylation for activation. AtT-20 cells expressing both KSA and arrestin3-(R170E) responded to U50,488 treatment with an increase in phospho-p38 consistent with the hypothesis. Primary cultured astrocytes (glial fibrillary acidic protein-positive) and neurons (γ-aminobutyric acid-positive) isolated from mouse striata also responded to U50,488 by increasing phospho-p38 immunolabeling. p38 activation was not evident in either striatal astrocytes or neurons isolated from KOR knock-out mice or GRK3 knock-out mice. Astrocytes pretreated with small interfering RNA for arrestin3 were also unable to activate p38 in response to U50,488 treatment. Furthermore, in striatal neurons, the kappa-mediated phospho-p38 labeling was colocalized with arrestin3. These findings suggest that KOR may activate p38 MAPK in brain by a GRK3 and arrestin-dependent mechanism.


The Journal of Neuroscience | 2007

Stress-Induced p38 Mitogen-Activated Protein Kinase Activation Mediates κ-Opioid-Dependent Dysphoria

Michael R. Bruchas; Benjamin B. Land; Megumi Aita; Mei Xu; Sabiha K. Barot; Shuang Li; Charles Chavkin

The molecular mechanisms mediating stress-induced dysphoria in humans and conditioned place aversion in rodents are unknown. Here, we show that repeated swim stress caused activation of both κ-opioid receptor (KOR) and p38 mitogen-activated protein kinase (MAPK) coexpressed in GABAergic neurons in the nucleus accumbens, cortex, and hippocampus. Sites of activation were visualized using phosphoselective antibodies against activated κ receptors (KOR-P) and against phospho-p38 MAPK. Surprisingly, the increase in P-p38-IR caused by swim-stress exposure was completely KOR dependent; P-p38-IR did not increase in KOR(−/−) knock-out mice subjected to the same swim-paradigm or in wild-type mice pretreated with the KOR antagonist norbinaltorphimine. To understand the relationship between p38 activation and the behavioral effects after KOR activation, we administered the p38 inhibitor SB203580 [4-(4-fluorophenyl)-2-(4-methylsulfonylphenyl)-5-(4-pyridyl)-1H-imidazole (i.c.v.)] and found that it selectively blocked the conditioned place aversion caused by the κ agonist trans-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]-benzeneacetamide (U50488) and the KOR-dependent swim stress-induced immobility while not affecting κ-opioid analgesia or nonselectively affecting associative learning. We found that the mechanism linking KOR and p38 activation in vivo was consistent with our previous in vitro data suggesting that β-arrestin recruitment is required; mice lacking G-protein-coupled receptor kinase 3 also failed to increase p-p38-IR after KOR activation in vivo, failed to show swim stress-induced immobility, or develop conditioned place aversion to U50488. Our results indicate that activation of p38 MAPK signaling by the endogenous dynorphin-κ-opioid system likely constitutes a key component of the molecular mechanisms mediating the aversive properties of stress.


Psychopharmacology | 2010

Kinase cascades and ligand-directed signaling at the kappa opioid receptor.

Michael R. Bruchas; Charles Chavkin

Background and RationaleThe dynorphin/kappa opioid receptor (KOR) system has been implicated as a critical component of the stress response. Stress-induced activation of dynorphin-KOR is well known to produce analgesia, and more recently, it has been implicated as a mediator of stress-induced responses including anxiety, depression, and reinstatement of drug seeking.ObjectiveDrugs selectively targeting specific KOR signaling pathways may prove potentially useful as therapeutic treatments for mood and addiction disorders.ResultsKOR is a member of the seven transmembrane spanning (7TM) G-protein coupled receptor (GPCR) superfamily. KOR activation of pertussis toxin-sensitive G proteins leads to Gαi/o inhibition of adenylyl cyclase production of cAMP and releases Gβγ, which modulates the conductances of Ca+2 and K+ channels. In addition, KOR agonists activate kinase cascades including G-protein coupled Receptor Kinases (GRK) and members of the mitogen-activated protein kinase (MAPK) family: ERK1/2, p38 and JNK. Recent pharmacological data suggests that GPCRs exist as dynamic, multi-conformational protein complexes that can be directed by specific ligands towards distinct signaling pathways. Ligand-induced conformations of KOR that evoke β-arrestin-dependent p38 MAPK activation result in aversion; whereas ligand-induced conformations that activate JNK without activating arrestin produce long-lasting inactivation of KOR signaling.ConclusionsIn this review, we discuss the current status of KOR signal transduction research and the data that support two novel hypotheses: (1) KOR selective partial agonists that do not efficiently activate p38 MAPK may be useful analgesics without producing the dysphoric or hallucinogenic effects of selective, highly efficacious KOR agonists and (2) KOR antagonists that do not activate JNK may be effective short-acting drugs that may promote stress-resilience.


Cell | 2015

Wireless Optofluidic Systems for Programmable In Vivo Pharmacology and Optogenetics

Jae Woong Jeong; Jordan G. McCall; Gunchul Shin; Yihui Zhang; Ream Al-Hasani; Minku Kim; Shuo Li; Joo Yong Sim; Kyung In Jang; Yan Shi; Daniel Y. Hong; Yuhao Liu; Gavin P. Schmitz; Li Xia; Zhubin He; Paul Gamble; Wilson Z. Ray; Yonggang Huang; Michael R. Bruchas; John A. Rogers

In vivo pharmacology and optogenetics hold tremendous promise for dissection of neural circuits, cellular signaling, and manipulating neurophysiological systems in awake, behaving animals. Existing neural interface technologies, such as metal cannulas connected to external drug supplies for pharmacological infusions and tethered fiber optics for optogenetics, are not ideal for minimally invasive, untethered studies on freely behaving animals. Here, we introduce wireless optofluidic neural probes that combine ultrathin, soft microfluidic drug delivery with cellular-scale inorganic light-emitting diode (μ-ILED) arrays. These probes are orders of magnitude smaller than cannulas and allow wireless, programmed spatiotemporal control of fluid delivery and photostimulation. We demonstrate these devices in freely moving animals to modify gene expression, deliver peptide ligands, and provide concurrent photostimulation with antagonist drug delivery to manipulate mesoaccumbens reward-related behavior. The minimally invasive operation of these probes forecasts utility in other organ systems and species, with potential for broad application in biomedical science, engineering, and medicine.

Collaboration


Dive into the Michael R. Bruchas's collaboration.

Top Co-Authors

Avatar

Jordan G. McCall

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John A. Rogers

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Robert W. Gereau

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Edward R. Siuda

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bryan A. Copits

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Dionnet L. Bhatti

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Jin-Moo Lee

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge