Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Charles Chavkin is active.

Publication


Featured researches published by Charles Chavkin.


Neuron | 1996

Induction of CRE-mediated gene expression by stimuli that generate long-lasting LTP in area CA1 of the hippocampus.

Soren Impey; Melanie D. Mark; Enrique C. Villacres; Steve Poser; Charles Chavkin; Daniel R. Storm

Gene expression regulated by the cAMP response element (CRE) has been implicated in synaptic plasticity and long-term memory. It has been proposed that CRE-mediated gene expression is stimulated by signals that induce long-term potentiation (LTP). To test this hypothesis, we made mice transgenic for a CRE-regulated reporter construct. We focused on long-lasting long-term potentiation (L-LTP), because it depends on cAMP-dependent protein kinase activity (PKA) and de novo gene expression. CRE-mediated gene expression was markedly increased after L-LTP, but not after decremental UP (D-LTP). Furthermore, inhibitors of PKA blocked L-LTP and associated increases in CRE-mediated gene expression. These data demonstrate that the signaling required for the generation of L-LTP but not D-LTP is sufficient to stimulate CRE-mediated transcription in the hippocampus.


The Journal of Neuroscience | 2009

REGULATION OF GONADOTROPIN-RELEASING HORMONE SECRETION BY KISSPEPTIN/DYNORPHIN/NEUROKININ B NEURONS IN THE ARCUATE NUCLEUS OF THE MOUSE

Víctor M. Navarro; Michelle L. Gottsch; Charles Chavkin; Hiroaki Okamura; Donald K. Clifton; Robert A. Steiner

Kisspeptin is encoded by the Kiss1 gene, and kisspeptin signaling plays a critical role in reproduction. In rodents, kisspeptin neurons in the arcuate nucleus (Arc) provide tonic drive to gonadotropin-releasing hormone (GnRH) neurons, which in turn supports basal luteinizing hormone (LH) secretion. Our objectives were to determine whether preprodynorphin (Dyn) and neurokinin B (NKB) are coexpressed in Kiss1 neurons in the mouse and to evaluate its physiological significance. Using in situ hybridization, we found that Kiss1 neurons in the Arc of female mice not only express the Dyn and NKB genes but also the NKB receptor gene (NK3) and the Dyn receptor [the κ opioid receptor (KOR)] gene. We also found that expression of the Dyn, NKB, KOR, and NK3 in the Arc are inhibited by estradiol, as has been established for Kiss1, and confirmed that Dyn and NKB inhibit LH secretion. Moreover, using Dyn and KOR knock-out mice, we found that long-term disruption of Dyn/KOR signaling compromises the rise of LH after ovariectomy. We propose a model whereby NKB and dynorphin act autosynaptically on kisspeptin neurons in the Arc to synchronize and shape the pulsatile secretion of kisspeptin and drive the release of GnRH from fibers in the median eminence.


The Journal of Neuroscience | 2008

The Dysphoric Component of Stress Is Encoded by Activation of the Dynorphin κ-Opioid System

Benjamin B. Land; Michael R. Bruchas; Julia C. Lemos; Mei Xu; Erica J. Melief; Charles Chavkin

Stress is a complex human experience having both positive and negative motivational properties. When chronic and uncontrollable, the adverse effects of stress on human health are considerable and yet poorly understood. Here, we report that the dysphoric properties of chronic stress are encoded by the endogenous opioid peptide dynorphin acting on specific stress-related neuronal circuits. Using different forms of stress presumed to evoke dysphoria in mice, we found that repeated forced swim and inescapable footshock both produced aversive behaviors that were blocked by a κ-opioid receptor (KOR) antagonist and absent in mice lacking dynorphin. Injection of corticotropin-releasing factor (CRF) or urocortin III, key mediators of the stress response, produced place aversion that was also blocked by dynorphin gene deletion or KOR antagonism. CRF-induced place aversion was blocked by the CRF2 receptor antagonist antisauvigine-30, but not by the CRF1 receptor antagonist antalarmin. In contrast, place aversion induced by the KOR agonist U50,488 was not blocked by antisauvigine-30. These results suggest that the aversive effects of stress were mediated by CRF2 receptor stimulation of dynorphin release and subsequent KOR activation. Using a phospho-selective antibody directed against the activated KOR to image sites of dynorphin action in the brain, we found that stress and CRF each caused dynorphin-dependent KOR activation in the basolateral amygdala, nucleus accumbens, dorsal raphe, and hippocampus. The convergence of stress-induced aversive inputs on the dynorphin system was unexpected, implicates dynorphin as a key mediator of dysphoria, and emphasizes κ-receptor antagonists as promising therapeutics.


Pharmacological Reviews | 2013

Regulation of μ-opioid receptors: Desensitization, phosphorylation, internalization, and tolerance

John T. Williams; Susan L. Ingram; Graeme Henderson; Charles Chavkin; Mark von Zastrow; Stefan Schulz; Thomas Koch; Christopher J. Evans; MacDonald J. Christie

Morphine and related µ-opioid receptor (MOR) agonists remain among the most effective drugs known for acute relief of severe pain. A major problem in treating painful conditions is that tolerance limits the long-term utility of opioid agonists. Considerable effort has been expended on developing an understanding of the molecular and cellular processes that underlie acute MOR signaling, short-term receptor regulation, and the progression of events that lead to tolerance for different MOR agonists. Although great progress has been made in the past decade, many points of contention and controversy cloud the realization of this progress. This review attempts to clarify some confusion by clearly defining terms, such as desensitization and tolerance, and addressing optimal pharmacological analyses for discerning relative importance of these cellular mechanisms. Cellular and molecular mechanisms regulating MOR function by phosphorylation relative to receptor desensitization and endocytosis are comprehensively reviewed, with an emphasis on agonist-biased regulation and areas where knowledge is lacking or controversial. The implications of these mechanisms for understanding the substantial contribution of MOR signaling to opioid tolerance are then considered in detail. While some functional MOR regulatory mechanisms contributing to tolerance are clearly understood, there are large gaps in understanding the molecular processes responsible for loss of MOR function after chronic exposure to opioids. Further elucidation of the cellular mechanisms that are regulated by opioids will be necessary for the successful development of MOR-based approaches to new pain therapeutics that limit the development of tolerance.


Brain Research | 2010

The dynorphin/kappa opioid system as a modulator of stress-induced and pro-addictive behaviors

Michael R. Bruchas; Benjamin B. Land; Charles Chavkin

Stress is a complex experience that carries both aversive and motivating properties. Chronic stress causes an increase in the risk of depression, is well known to increase relapse of drug seeking behavior, and can adversely impact health. Several brain systems have been demonstrated to be critical in mediating the negative affect associated with stress, and recent evidence directly links the actions of the endogenous opioid neuropeptide dynorphin in modulating mood and increasing the rewarding effects of abused drugs. These results suggest that activation of the dynorphin/kappa opioid receptor (KOR) system is likely to play a major role in the pro-addictive effects of stress. This review explores the relationship between dynorphin and corticotropin-releasing factor (CRF) in the induction of dysphoria, the potentiation of drug seeking, and stress-induced reinstatement. We also provide an overview of the signal transduction events responsible for CRF and dynorphin/KOR-dependent behaviors. Understanding the recent work linking activation of CRF and dynorphin/KOR systems and their specific roles in brain stress systems and behavioral models of addiction provides novel insight to neuropeptide systems that regulate affective state.


Neuropsychopharmacology | 2006

Prior Activation of Kappa Opioid Receptors by U50,488 Mimics Repeated Forced Swim Stress to Potentiate Cocaine Place Preference Conditioning

Jay P. McLaughlin; Benjamin B. Land; Shuang Li; John E. Pintar; Charles Chavkin

Repeated forced-swim stress (FSS) produced analgesia, immobility and potentiation of cocaine-conditioned place preference (CPP) in wild-type C57Bl/6 mice, but not in littermates lacking the kappa opioid receptor (KOR) gene. These results were surprising because kappa agonists are known to produce conditioned place aversion and to suppress cocaine-CPP when coadministered with cocaine. The possibility that disruption of the kappa system blocked the stress response by adversely affecting the hypothalamic-pituitary axis was examined by measuring plasma corticosterone levels. However, disruption of the dynorphin/kappa system by gene deletion or receptor antagonism did not reduce the FSS-induced elevation of plasma corticosterone levels. A second explanation for the difference is that kappa receptor activation caused by FSS occurred prior to cocaine conditioning rather than contemporaneously. To test this hypothesis, we measured the effects of the kappa agonist (trans)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)-cyclohexyl]benzeneacetamide (U50,488) administered to mice at various intervals preceding cocaine conditioning. The results showed that the interaction between the kappa system and cocaine reinforcement depended on the timing of the drug pairing. Mice given U50,488 60 min prior to cocaine showed a robust, nor-BNI-sensitive potentiation of cocaine-CPP, whereas administration 15 min before cocaine significantly suppressed cocaine-CPP. In the absence of cocaine, U50,488 given 60 min prior to saline conditioning produced no place preference, whereas administration 15 min before saline conditioning produced significant place aversion. The results of this study suggest that kappa receptor activation induced by FSS prior to the cocaine-conditioning session may be both necessary and sufficient for potentiation of the reinforcing actions of cocaine.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Activation of the kappa opioid receptor in the dorsal raphe nucleus mediates the aversive effects of stress and reinstates drug seeking

Benjamin B. Land; Michael R. Bruchas; Selena S. Schattauer; William J. Giardino; Megumi Aita; Daniel I. Messinger; Thomas S. Hnasko; Richard D. Palmiter; Charles Chavkin

Although stress has profound effects on motivated behavior, the underlying mechanisms responsible are incompletely understood. In this study we elucidate a functional pathway in mouse brain that encodes the aversive effects of stress and mediates stress-induced reinstatement of cocaine place preference (CPP). Activation of the dynorphin/kappa opioid receptor (KOR) system by either repeated stress or agonist produces conditioned place aversion (CPA). Because KOR inhibition of dopamine release in the mesolimbic pathway has been proposed to mediate the dysphoria underlying this response, we tested dopamine-deficient mice in this study and found that KOR agonist in these mice still produced CPA. However, inactivation of serotonergic KORs by injection of the KOR antagonist norBNI into the dorsal raphe nucleus (DRN), blocked aversive responses to the KOR agonist U50,488 and blocked stress-induced reinstatement of CPP. KOR knockout (KO) mice did not develop CPA to U50,488; however, lentiviral re-expression of KOR in the DRN of KOR KO mice restored place aversion. In contrast, lentiviral expression in DRN of a mutated form of KOR that fails to activate p38 MAPK required for KOR-dependent aversion, did not restore place aversion. DRN serotonergic neurons project broadly throughout the brain, but the inactivation of KOR in the nucleus accumbens (NAc) coupled with viral re-expression in the DRN of KOR KO mice demonstrated that aversion was encoded by a DRN to NAc projection. These results suggest that the adverse effects of stress may converge on the serotonergic system and offers an approach to controlling stress-induced dysphoria and relapse.


Neuropsychopharmacology | 2006

Social Defeat Stress-Induced Behavioral Responses are Mediated by the Endogenous Kappa Opioid System

Jay P. McLaughlin; Shuang Li; Joseph Valdez; Theodore A Chavkin; Charles Chavkin

Previous studies have demonstrated that repeated forced-swim stress-induced behaviors (including analgesia, immobility, and increased drug reward) were mediated by the release of endogenous prodynorphin-derived opioid peptides and subsequent activation of the kappa opioid receptor (KOR). We tested the generality of these effects using a different type of stressful situation: repeated social defeat. C57Bl/6 mice subjected to social defeat stress (SDS) over 3 days showed a characteristic stress-induced immobility and defeated-postural response, as well as stress-induced analgesia (SIA). Daily pretreatment with the KOR antagonist nor-binaltorphimine (nor-BNI, 10 mg/kg, i.p.) blocked the SIA and significantly reduced the stress-induced immobility on the second and third days of SDS exposure. In contrast, prodynorphin gene-disrupted mice showed no significant increase in immobility, socially defeated postures, or SIA following repeated exposure to SDS. Since both stress and the kappa opioid system can modulate the response to drugs of abuse, we tested the effects of SDS on cocaine-conditioned place preference (CPP). SDS-exposed mice conditioned with cocaine (15 mg/kg, s.c.) showed significant potentiation of place-preference for the drug-paired chamber over the responses of unstressed mice. Nor-BNI pretreatment blocked stress-induced potentiation of cocaine-CPP. Consistent with this result, mice lacking the prodynorphin gene did not show stress-induced potentiation of cocaine-CPP, whereas wild-type littermates did. The findings suggest that chronic SDS may activate the kappa opioid system to produce analgesia, immobility, social defeat postures, and resulting in a potentiation of the acute rewarding properties of cocaine.


Journal of Biological Chemistry | 1999

TARGETED CONSTRUCTION OF PHOSPHORYLATION-INDEPENDENT BETA -ARRESTIN MUTANTS WITH CONSTITUTIVE ACTIVITY IN CELLS

Abraham Kovoor; Jeremy Celver; Ravil I. Abdryashitov; Charles Chavkin; Vsevolod V. Gurevich

Arrestin proteins play a key role in the desensitization of G protein-coupled receptors (GPCRs). Recently we proposed a molecular mechanism whereby arrestin preferentially binds to the activated and phosphorylated form of its cognate GPCR. To test the model, we introduced two different types of mutations into β-arrestin that were expected to disrupt two crucial elements that make β-arrestin binding to receptors phosphorylation-dependent. We found that two β-arrestin mutants (Arg169→ Glu and Asp383 → Ter) (Ter, stop codon) are indeed “constitutively active.” In vitro these mutants bind to the agonist-activated β2-adrenergic receptor (β2AR) regardless of its phosphorylation status. When expressed in Xenopus oocytes these β-arrestin mutants effectively desensitize β2AR in a phosphorylation-independent manner. Constitutively active β-arrestin mutants also effectively desensitize δ opioid receptor (DOR) and restore the agonist-induced desensitization of a truncated DOR lacking the critical G protein-coupled receptor kinase (GRK) phosphorylation sites. The kinetics of the desensitization induced by phosphorylation-independent mutants in the absence of receptor phosphorylation appears identical to that induced by wild type β-arrestin + GRK3. Either of the mutations could have occurred naturally and made receptor kinases redundant, raising the question of why a more complex two-step mechanism (receptor phosphorylation followed by arrestin binding) is universally used.


Journal of Biological Chemistry | 2006

Kappa Opioid Receptor Activation of p38 MAPK Is GRK3- and Arrestin-dependent in Neurons and Astrocytes

Michael R. Bruchas; Tara A. Macey; Janet Lowe; Charles Chavkin

AtT-20 cells expressing the wild-type kappa opioid receptor (KOR) increased phospho-p38 MAPK following treatment with the kappa agonist U50,488. The increase was blocked by the kappa antagonist norbinaltorphimine and not evident in untransfected cells. In contrast, U50,488 treatment of AtT-20 cells expressing KOR having alanine substituted for serine-369 (KSA) did not increase phospho-p38. Phosphorylation of serine 369 in the KOR carboxyl terminus by G-protein receptor kinase 3 (GRK3) was previously shown to be required for receptor desensitization, and the results suggest that p38 MAPK activation by KOR may require arrestin recruitment. This hypothesis was tested by transfecting arrestin3-(R170E), a dominant positive form of arrestin that does not require receptor phosphorylation for activation. AtT-20 cells expressing both KSA and arrestin3-(R170E) responded to U50,488 treatment with an increase in phospho-p38 consistent with the hypothesis. Primary cultured astrocytes (glial fibrillary acidic protein-positive) and neurons (γ-aminobutyric acid-positive) isolated from mouse striata also responded to U50,488 by increasing phospho-p38 immunolabeling. p38 activation was not evident in either striatal astrocytes or neurons isolated from KOR knock-out mice or GRK3 knock-out mice. Astrocytes pretreated with small interfering RNA for arrestin3 were also unable to activate p38 in response to U50,488 treatment. Furthermore, in striatal neurons, the kappa-mediated phospho-p38 labeling was colocalized with arrestin3. These findings suggest that KOR may activate p38 MAPK in brain by a GRK3 and arrestin-dependent mechanism.

Collaboration


Dive into the Charles Chavkin's collaboration.

Top Co-Authors

Avatar

Michael R. Bruchas

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mei Xu

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julia C. Lemos

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wenzhen Jin

University of Washington

View shared research outputs
Researchain Logo
Decentralizing Knowledge