Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael R. Deans is active.

Publication


Featured researches published by Michael R. Deans.


Neuron | 2001

Synchronous Activity of Inhibitory Networks in Neocortex Requires Electrical Synapses Containing Connexin36

Michael R. Deans; Jay R. Gibson; Caterina Sellitto; Barry W. Connors; David L. Paul

Inhibitory interneurons often generate synchronous activity as an emergent property of their interconnections. To determine the role of electrical synapses in such activity, we constructed mice expressing histochemical reporters in place of the gap junction protein Cx36. Localization of the reporter with somatostatin and parvalbumin suggested that Cx36 was expressed largely by interneurons. Electrical synapses were common among cortical interneurons in controls but were nearly absent in knockouts. A metabotropic glutamate receptor agonist excited LTS interneurons, generating rhythmic inhibitory potentials in surrounding neurons of both wild-type and knockout animals. However, the synchrony of these rhythms was weaker and more spatially restricted in the knockout. We conclude that electrical synapses containing Cx36 are critical for the generation of widespread, synchronous inhibitory activity.


Neuron | 2002

Connexin36 Is Essential for Transmission of Rod-Mediated Visual Signals in the Mammalian Retina

Michael R. Deans; Béla Völgyi; Daniel A. Goodenough; Stewart A. Bloomfield; David L. Paul

To examine the functions of electrical synapses in the transmission of signals from rod photoreceptors to ganglion cells, we generated connexin36 knockout mice. Reporter expression indicated that connexin36 was present in multiple retinal neurons including rod photoreceptors, cone bipolar cells, and AII amacrine cells. Disruption of electrical synapses between adjacent AIIs and between AIIs and ON cone bipolars was demonstrated by intracellular injection of Neurobiotin. In addition, extracellular recording in the knockout revealed the complete elimination of rod-mediated, on-center responses at the ganglion cell level. These data represent direct proof that electrical synapses are critical for the propagation of rod signals across the mammalian retina, and they demonstrate the existence of multiple rod pathways, each of which is dependent on electrical synapses.


The Journal of Neuroscience | 2004

Convergence and segregation of the multiple rod pathways in mammalian retina

Béla Völgyi; Michael R. Deans; David L. Paul; Stewart A. Bloomfield

Using a multidisciplinary approach, we demonstrate that three different pathways are responsible for the transmission of rod signals across the mouse retina. Each pathway serves a primarily nonoverlapping range of stimulus intensities, with ganglion cells receiving either segregated or convergent inputs. For both on-center (ON) and off-center (OFF) ganglion cells, the primary rod pathway carries signals with the lowest threshold, whereas the secondary rod pathway is less sensitive by ∼1 log unit. In addition, OFF signaling uses a tertiary rod pathway that is ∼1 log unit less sensitive than the secondary. Although some ganglion cells received rod inputs exclusively from one of the pathways, others showed convergent inputs. Using pharmacological and genetic approaches, we defined classes of ON and OFF ganglion cells for which the scotopic inputs derive only from the primary pathway or from both primary and secondary pathways. In addition, we observed a class of OFF ganglion cell receiving mixed input from primary and tertiary pathways. Interestingly, OFF ganglion cells receiving convergent inputs from all three rod pathways or from the secondary and tertiary pathways together were never observed. Overall, our data show a complex arrangement of convergence and segregation of rod inputs to ganglion cells in the mammalian retina.


Nature | 1998

Connexin mutations in deafness

Thomas W. White; Michael R. Deans; David P. Kelsell; David L. Paul

Genetic deafness is one of the most prevalent inherited sensory disorders, affecting about 1 in 2,000 children. Mutations in the connexin 26 gene have been associated with autosomal recessive non-syndromic deafness (DFNB1). The connexin 26 gene is a member of the connexin family of genes, which encode intercellular channels comprising gap junctions, and it is abundantly expressed in the organ of Corti,. Here we test the channel-forming ability of mutant connexin 26 proteins using a well-characterized in vitro system for functional expression of connexin channels. We find that mutant connexin 26 proteins can act as dominant inhibitors of wild-type connexin 26 channel activity.


The Journal of Neuroscience | 2007

Asymmetric Distribution of Prickle-Like 2 Reveals an Early Underlying Polarization of Vestibular Sensory Epithelia in the Inner Ear

Michael R. Deans; Dragana Antic; Kaye Suyama; Matthew P. Scott; Jeffrey D. Axelrod; Lisa V. Goodrich

Vestibular hair cells have a distinct planar cell polarity (PCP) manifest in the morphology of their stereocilia bundles and the asymmetric localization of their kinocilia. In the utricle and saccule the hair cells are arranged in an orderly array about an abrupt line of reversal that separates fields of cells with opposite polarity. We report that the putative PCP protein Prickle-like 2 (Pk2) is distributed in crescents on the medial sides of vestibular epithelial cells before the morphological polarization of hair cells. Despite the presence of a line of polarity reversal, crescent position is not altered between hair cells of opposite polarity. Frizzled 6 (Fz6), a second PCP protein, is distributed opposite Pk2 along the lateral side of vestibular support cells. Similar to Pk2, the subcellular localization of Fz6 does not differ between cells located on opposite sides of the line of reversal. In addition, in Looptail/Van Gogh-like2 mutant mice Pk2 is distributed asymmetrically at embryonic day 14.5 (E14.5), but this localization is not coordinated between adjacent cells, and the crescents subsequently are lost by E18.5. Together, these results support the idea that a conserved PCP complex acts before stereocilia bundle development to provide an underlying polarity to all cells in the vestibular epithelia and that cells on either side of the line of reversal are programmed to direct the kinocilium in opposite directions with respect to the polarity axis defined by PCP protein distribution.


European Journal of Neuroscience | 1999

Functional characteristics of skate connexin35, a member of the γ subfamily of connexins expressed in the vertebrate retina

Thomas W. White; Michael R. Deans; John O'Brien; Muayyad R. Al-Ubaidi; Daniel A. Goodenough; Harris Ripps; Roberto Bruzzone

Retinal neurons are coupled by electrical synapses that have been studied extensively in situ and in isolated cell pairs. Although many unique gating properties have been identified, the connexin composition of retinal gap junctions is not well defined. We have functionally characterized connexin35 (Cx35), a recently cloned connexin belonging to the γ subgroup expressed in the skate retina, and compared its biophysical properties with those obtained from electrically coupled retinal cells. Injection of Cx35 RNA into pairs of Xenopus oocytes induced intercellular conductances that were voltage‐gated at transjunctional potentials ≥ 60 mV, and that were also closed by intracellular acidification. In contrast, Cx35 was unable to functionally interact with rodent connexins from the α or β subfamilies. Voltage‐activated hemichannel currents were also observed in single oocytes expressing Cx35, and superfusing these oocytes with medium containing 100 μm quinine resulted in a 1.8‐fold increase in the magnitude of the outward currents, but did not change the threshold of voltage activation (membrane potential = +20 mV). Cx35 intercellular channels between paired oocytes were insensitive to quinine treatment. Both hemichannel activity and its modulation by quinine were seen previously in recordings from isolated skate horizontal cells. Voltage‐activated currents of Cx46 hemichannels were also enhanced 1.6‐fold following quinine treatment, whereas Cx43‐injected oocytes showed no hemichannel activity in the presence, or absence, of quinine. Although the cellular localization of Cx35 is unknown, the functional characteristics of Cx35 in Xenopus oocytes are consistent with the hemichannel and intercellular channel properties of skate horizontal cells.


PLOS ONE | 2012

Comparison of Phenotypes between Different vangl2 Mutants Demonstrates Dominant Effects of the Looptail Mutation during Hair Cell Development

Haifeng Yin; Catherine O. Copley; Lisa V. Goodrich; Michael R. Deans

Experiments utilizing the Looptail mutant mouse, which harbors a missense mutation in the vangl2 gene, have been essential for studies of planar polarity and linking the function of the core planar cell polarity proteins to other developmental signals. Originally described as having dominant phenotypic traits, the molecular interactions underlying the Looptail mutant phenotype are unclear because Vangl2 protein levels are significantly reduced or absent from mutant tissues. Here we introduce a vangl2 knockout mouse and directly compare the severity of the knockout and Looptail mutant phenotypes by intercrossing the two lines and assaying the planar polarity of inner ear hair cells. Overall the vangl2 knockout phenotype is milder than the phenotype of compound mutants carrying both the Looptail and vangl2 knockout alleles. In compound mutants a greater number of hair cells are affected and changes in the orientation of individual hair cells are greater when quantified. We further demonstrate in a heterologous cell system that the protein encoded by the Looptail mutation (Vangl2S464N) disrupts delivery of Vangl1 and Vangl2 proteins to the cell surface as a result of oligomer formation between Vangl1 and Vangl2S464N, or Vangl2 and Vangl2S464N, coupled to the intracellular retention of Vangl2S464N. As a result, Vangl1 protein is missing from the apical cell surface of vestibular hair cells in Looptail mutants, but is retained at the apical cell surface of hair cells in vangl2 knockouts. Similarly the distribution of Prickle-like2, a putative Vangl2 interacting protein, is differentially affected in the two mutant lines. In summary, we provide evidence for a direct physical interaction between Vangl1 and Vangl2 through a combination of in vitro and in vivo approaches and propose that this interaction underlies the dominant phenotypic traits associated with the Looptail mutation.


PLOS ONE | 2010

Mammalian Otolin: A Multimeric Glycoprotein Specific to the Inner Ear that Interacts with Otoconial Matrix Protein Otoconin-90 and Cerebellin-1

Michael R. Deans; Jonathan M. Peterson; G. William Wong

Background The mammalian otoconial membrane is a dense extracellular matrix containing bio-mineralized otoconia. This structure provides the mechanical stimulus necessary for hair cells of the vestibular maculae to respond to linear accelerations and gravity. In teleosts, Otolin is required for the proper anchoring of otolith crystals to the sensory maculae. Otoconia detachment and subsequent entrapment in the semicircular canals can result in benign paroxysmal positional vertigo (BPPV), a common form of vertigo for which the molecular basis is unknown. Several cDNAs encoding protein components of the mammalian otoconia and otoconial membrane have recently been identified, and mutations in these genes result in abnormal otoconia formation and balance deficits. Principal Findings Here we describe the cloning and characterization of mammalian Otolin, a protein constituent of otoconia and the otoconial membrane. Otolin is a secreted glycoprotein of ∼70 kDa, with a C-terminal globular domain that is homologous to the immune complement C1q, and contains extensive posttranslational modifications including hydroxylated prolines and glycosylated lysines. Like all C1q/TNF family members, Otolin multimerizes into higher order oligomeric complexes. The expression of otolin mRNA is restricted to the inner ear, and immunohistochemical analysis identified Otolin protein in support cells of the vestibular maculae and semi-circular canal cristae. Additionally, Otolin forms protein complexes with Cerebellin-1 and Otoconin-90, two protein constituents of the otoconia, when expressed in vitro. Otolin was also found in subsets of support cells and non-sensory cells of the cochlea, suggesting that Otolin is also a component of the tectorial membrane. Conclusion Given the importance of Otolin in lower organisms, the molecular cloning and biochemical characterization of the mammalian Otolin protein may lead to a better understanding of otoconial development and vestibular dysfunction.


Neuron | 2011

Control of Neuronal Morphology by the Atypical Cadherin Fat3

Michael R. Deans; Alexandra Krol; Victoria E. Abraira; Catherine O. Copley; Andrew F. Tucker; Lisa V. Goodrich

Neurons receive signals through dendrites that vary widely in number and organization, ranging from one primary dendrite to multiple complex dendritic trees. For example, retinal amacrine cells (ACs) project primary dendrites into a discrete synaptic layer called the inner plexiform layer (IPL) and only rarely extend processes into other retinal layers. Here, we show that the atypical cadherin Fat3 ensures that ACs develop this unipolar morphology. AC precursors are initially multipolar but lose neurites as they migrate through the neuroblastic layer. In fat3 mutants, pruning is unreliable and ACs elaborate two dendritic trees: one in the IPL and a second projecting away from the IPL that stratifies to form an additional synaptic layer. Since complex nervous systems are characterized by the addition of layers, these results demonstrate that mutations in a single gene can cause fundamental changes in circuit organization that may drive nervous system evolution.


Cell Communication and Adhesion | 2001

Mouse horizontal cells do not express connexin26 or connexin36

Michael R. Deans; David L. Paul

Gap junctions between neurons function as electrical synapses, and are present in all layers of mammalian and teleost retina. These synapses are largest and most prominent between horizontal cells where they function to increase the receptive field of a single neuron beyond the width of its dendrites. Receptive field size and the extent of gap junctional coupling between horizontal cells is regulated by ambient light levels and may mediate light/dark adaptation. Furthermore, teleost horizontal cell gap junction hemichannels may facilitate a mechanism of feedback inhibition between horizontal cells and cone photoreceptors. As a prelude to using mouse genetic models to study horizontal cell gap junctions and hemichannels, we sought to determine the connexin complement of mouse horizontal cells. Cx36, Cx37, Cx43, Cx45 and Cx57 mRNA could be detected in mouse retina by RT-PCR. Microscopy was used to further examine the distribution of Cx26 and Cx36. Cx26 immunofluorescence and a β-gal reporter under regulatory control of the Cx36 promoter did not colocalize with a horizontal cell marker, indicating that these genes are not expressed by horizontal cells. The identity of the connexin(s) forming electrical synapses between mouse horizontal cells and the connexin that may form hemichannels in the horizontal cell telodendria remains unknown.

Collaboration


Dive into the Michael R. Deans's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge