Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael R. Gillings is active.

Publication


Featured researches published by Michael R. Gillings.


Nature | 2004

Spatial scaling of microbial eukaryote diversity

Jessica L. Green; Andrew J. Holmes; Mark Westoby; Ian Oliver; David A. Briscoe; Mark Dangerfield; Michael R. Gillings; Andrew J. Beattie

Patterns in the spatial distribution of organisms provide important information about mechanisms that regulate the diversity of life and the complexity of ecosystems. Although microorganisms may comprise much of the Earths biodiversity and have critical roles in biogeochemistry and ecosystem functioning, little is known about their spatial diversification. Here we present quantitative estimates of microbial community turnover at local and regional scales using the largest spatially explicit microbial diversity data set available (> 106 sample pairs). Turnover rates were small across large geographical distances, of similar magnitude when measured within distinct habitats, and did not increase going from one vegetation type to another. The taxa–area relationship of these terrestrial microbial eukaryotes was relatively flat (slope z = 0.074) and consistent with those reported in aquatic habitats. This suggests that despite high local diversity, microorganisms may have only moderate regional diversity. We show how turnover patterns can be used to project taxa–area relationships up to whole continents. Taxa dissimilarities across continents and between them would strengthen these projections. Such data do not yet exist, but would be feasible to collect.


Biological Procedures Online | 1998

Methods for microbial DNA extraction from soil for PCR amplification

Christine Yeates; Michael R. Gillings; A D Davison; Nadia Altavilla; D. A. Veal

Amplification of DNA from soil is often inhibited by co-purified contaminants. A rapid, inexpensive, large-scale DNA extraction method involving minimal purification has been developed that is applicable to various soil types (1). DNA is also suitable for PCR amplification using various DNA targets. DNA was extracted from 100g of soil using direct lysis with glass beads and SDS followed by potassium acetate precipitation, polyethylene glycol precipitation, phenol extraction and isopropanol precipitation. This method was compared to other DNA extraction methods with regard to DNA purity and size.


Fems Microbiology Reviews | 2011

Gene flow, mobile genetic elements and the recruitment of antibiotic resistance genes into Gram‐negative pathogens

H. W. Stokes; Michael R. Gillings

Antibiotics were one of the great discoveries of the 20th century. However, resistance appeared even in the earliest years of the antibiotic era. Antibiotic resistance continues to become worse, despite the ever-increasing resources devoted to combat the problem. One of the most important factors in the development of resistance to antibiotics is the remarkable ability of bacteria to share genetic resources via Lateral Gene Transfer (LGT). LGT occurs on a global scale, such that in theory, any gene in any organism anywhere in the microbial biosphere might be mobilized and spread. With sufficiently strong selection, any gene may spread to a point where it establishes a global presence. From an antibiotic resistance perspective, this means that a resistance phenotype can appear in a diverse range of infections around the globe nearly simultaneously. We discuss the forces and agents that make this LGT possible and argue that the problem of resistance can ultimately only be managed by understanding the problem from a broad ecological and evolutionary perspective. We also argue that human activities are exacerbating the problem by increasing the tempo of LGT and bacterial evolution for many traits that are important to humans.


Journal of Bacteriology | 2008

The Evolution of Class 1 Integrons and the Rise of Antibiotic Resistance

Michael R. Gillings; Yan Boucher; Maurizio Labbate; Andrew J. Holmes; Samyuktha Krishnan; Marita Holley; H. W. Stokes

Class 1 integrons are central players in the worldwide problem of antibiotic resistance, because they can capture and express diverse resistance genes. In addition, they are often embedded in promiscuous plasmids and transposons, facilitating their lateral transfer into a wide range of pathogens. Understanding the origin of these elements is important for the practical control of antibiotic resistance and for exploring how lateral gene transfer can seriously impact on, and be impacted by, human activities. We now show that class 1 integrons can be found on the chromosomes of nonpathogenic soil and freshwater Betaproteobacteria. Here they exhibit structural and sequence diversity, an absence of antibiotic resistance genes, and a phylogenetic signature of lateral transfer. Some examples are almost identical to the core of the class 1 integrons now found in pathogens, leading us to conclude that environmental Betaproteobacteria were the original source of these genetic elements. Because these elements appear to be readily mobilized, their lateral transfer into human commensals and pathogens was inevitable, especially given that Betaproteobacteria carrying class 1 integrons are common in natural environments that intersect with the human food chain. The strong selection pressure imposed by the human use of antimicrobial compounds then ensured their fixation and global spread into new species.


The ISME Journal | 2015

Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution

Michael R. Gillings; William H. Gaze; Amy Pruden; Kornelia Smalla; James M. Tiedje; Yong-Guan Zhu

Around all human activity, there are zones of pollution with pesticides, heavy metals, pharmaceuticals, personal care products and the microorganisms associated with human waste streams and agriculture. This diversity of pollutants, whose concentration varies spatially and temporally, is a major challenge for monitoring. Here, we suggest that the relative abundance of the clinical class 1 integron-integrase gene, intI1, is a good proxy for pollution because: (1) intI1 is linked to genes conferring resistance to antibiotics, disinfectants and heavy metals; (2) it is found in a wide variety of pathogenic and nonpathogenic bacteria; (3) its abundance can change rapidly because its host cells can have rapid generation times and it can move between bacteria by horizontal gene transfer; and (4) a single DNA sequence variant of intI1 is now found on a wide diversity of xenogenetic elements, these being complex mosaic DNA elements fixed through the agency of human selection. Here we review the literature examining the relationship between anthropogenic impacts and the abundance of intI1, and outline an approach by which intI1 could serve as a proxy for anthropogenic pollution.


Applied and Environmental Microbiology | 2005

Microcolony cultivation on a soil substrate membrane system selects for previously uncultured soil bacteria.

Belinda C. Ferrari; Svend Jørgen Binnerup; Michael R. Gillings

ABSTRACT Traditional microbiological methods of cultivation recover less than 1% of the total bacterial species, and the culturable portion of bacteria is not representative of the total phylogenetic diversity. Classical cultivation strategies are now known to supply excessive nutrients to a system and therefore select for fast-growing bacteria that are capable of colony or biofilm formation. New approaches to the cultivation of bacteria which rely on growth in dilute nutrient media or simulated environments are beginning to address this problem of selection. Here we describe a novel microcultivation method for soil bacteria that mimics natural conditions. Our soil slurry membrane system combines a polycarbonate membrane as a growth support and soil extract as the substrate. The result is abundant growth of uncharacterized bacteria as microcolonies. By combining microcultivation with fluorescent in situ hybridization, previously “unculturable” organisms belonging to cultivated and noncultivated divisions, including candidate division TM7, can be identified by fluorescence microscopy. Successful growth of soil bacteria as microcolonies confirmed that the missing culturable majority may have a growth strategy that is not observed when traditional cultivation indicators are used.


Electrophoresis | 2000

Complementing genomics with proteomics: The membrane subproteome of Pseudomonas aeruginosa PAO1

Amanda Nouwens; Stuart J. Cordwell; Martin R. Larsen; Mark P. Molloy; Michael R. Gillings; Mark D. P. Willcox; Bradley J. Walsh

With the completion of many genome projects, a shift is now occurring from the acquisition of gene sequence to understanding the role and context of gene products within the genome. The opportunistic pathogen Pseudomonas aeruginosa is one organism for which a genome sequence is now available, including the annotation of open reading frames (ORFs). However, approximately one third of the ORFs are as yet undefined in function. Proteomics can complement genomics, by characterising gene products and their response to a variety of biological and environmental influences. In this study we have established the first two‐dimensional gel electrophoresis reference map of proteins from the membrane fraction of P. aeruginosa strain PA01. A total of 189 proteins have been identified and correlated with 104 genes from the P. aeruginosa genome. Annotated membrane proteins could be grouped into three distinct categories: (i) those with functions previously characterised in P. aeruginosa (38%); (ii) those with significant sequence similarity to proteins with assigned function or hypothetical proteins in other organisms (46%); and (iii) those with unknown function (16%). Transmembrane prediction algorithms showed that each identified protein sequence contained at least one membrane‐spanning region. Furthermore, the current methodology used to isolate the membrane fraction was shown to be highly specific since no contaminating cytosolic proteins were characterised. Preliminary analysis showed that at least 15 gel spots may be glycosylated in vivo, including three proteins that have not previously been functionally characterised. The reference map of membrane proteins from this organism is now the basis for determining surface molecules associated with antibiotic resistance and efflux, cell‐cell signalling and pathogen‐host interactions in a variety of P. aeruginosa strains.


Applied and Environmental Microbiology | 2001

Gene Cassette PCR: Sequence-Independent Recovery of Entire Genes from Environmental DNA

Harold W. Stokes; Andrew J. Holmes; Blair S Nield; Marita Holley; Helena Nevalainen; Bridget C. Mabbutt; Michael R. Gillings

ABSTRACT The vast majority of bacteria in the environment have yet to be cultured. Consequently, a major proportion of both genetic diversity within known gene families and an unknown number of novel gene families reside in these uncultured organisms. Isolation of these genes is limited by lack of sequence information. Where such sequence data exist, PCR directed at conserved sequence motifs recovers only partial genes. Here we outline a strategy for recovering complete open reading frames from environmental DNA samples. PCR assays were designed to target the 59-base element family of recombination sites that flank gene cassettes associated with integrons. Using such assays, diverse gene cassettes could be amplified from the vast majority of environmental DNA samples tested. These gene cassettes contained complete open reading frames, the majority of which were associated with ribosome binding sites. Novel genes with clear homologies to phosphotransferase, DNA glycosylase, methyl transferase, and thiotransferase genes were identified. However, the majority of amplified gene cassettes contained open reading frames with no identifiable homologues in databases. Accumulation analysis of the gene cassettes amplified from soil samples showed no signs of saturation, and soil samples taken at 1-m intervals along transects demonstrated different amplification profiles. Taken together, the genetic novelty, steep accumulation curves, and spatial heterogeneity of genes recovered show that this method taps into a vast pool of unexploited genetic diversity. The success of this approach indicates that mobile gene cassettes and, by inference, integrons are widespread in natural environments and are likely to contribute significantly to bacterial diversity.


Microbiology and Molecular Biology Reviews | 2014

Integrons: Past, Present, and Future

Michael R. Gillings

SUMMARY Integrons are versatile gene acquisition systems commonly found in bacterial genomes. They are ancient elements that are a hot spot for genomic complexity, generating phenotypic diversity and shaping adaptive responses. In recent times, they have had a major role in the acquisition, expression, and dissemination of antibiotic resistance genes. Assessing the ongoing threats posed by integrons requires an understanding of their origins and evolutionary history. This review examines the functions and activities of integrons before the antibiotic era. It shows how antibiotic use selected particular integrons from among the environmental pool of these elements, such that integrons carrying resistance genes are now present in the majority of Gram-negative pathogens. Finally, it examines the potential consequences of widespread pollution with the novel integrons that have been assembled via the agency of human antibiotic use and speculates on the potential uses of integrons as platforms for biotechnology.


Frontiers in Microbiology | 2013

Evolutionary consequences of antibiotic use for the resistome, mobilome and microbial pangenome

Michael R. Gillings

The widespread use and abuse of antibiotic therapy has evolutionary and ecological consequences, some of which are only just beginning to be examined. One well known consequence is the fixation of mutations and lateral gene transfer (LGT) events that confer antibiotic resistance. Sequential selection events, driven by different classes of antibiotics, have resulted in the assembly of diverse resistance determinants and mobile DNAs into novel genetic elements of ever-growing complexity and flexibility. These novel plasmids, integrons, and genomic islands have now become fixed at high frequency in diverse cell lineages by human antibiotic use. Consequently they can be regarded as xenogenetic pollutants, analogous to xenobiotic compounds, but with the critical distinction that they replicate rather than degrade when released to pollute natural environments. Antibiotics themselves must also be regarded as pollutants, since human production overwhelms natural synthesis, and a major proportion of ingested antibiotic is excreted unchanged into waste streams. Such antibiotic pollutants have non-target effects, raising the general rates of mutation, recombination, and LGT in all the microbiome, and simultaneously providing the selective force to fix such changes. This has the consequence of recruiting more genes into the resistome and mobilome, and of increasing the overlap between these two components of microbial genomes. Thus the human use and environmental release of antibiotics is having second order effects on the microbial world, because these small molecules act as drivers of bacterial evolution. Continued pollution with both xenogenetic elements and the selective agents that fix such elements in populations has potentially adverse consequences for human welfare.

Collaboration


Dive into the Michael R. Gillings's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yong-Guan Zhu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge