Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael R. Gold is active.

Publication


Featured researches published by Michael R. Gold.


Journal of Immunology | 2002

The Human Antimicrobial Peptide LL-37 Is a Multifunctional Modulator of Innate Immune Responses

Monisha G. Scott; Donald J. Davidson; Michael R. Gold; Dawn M. E. Bowdish; Robert E. W. Hancock

The role of LL-37, a human cationic antimicrobial peptide, in the immune system is not yet clearly understood. It is a widely expressed peptide that can be up-regulated during an immune response. In this report, we demonstrate that LL-37 is a potent antisepsis agent with the ability to inhibit macrophage stimulation by bacterial components such as LPS, lipoteichoic acid, and noncapped lipoarabinomannan. We also demonstrate that LL-37 protects mice against lethal endotoxemia. In addition to preventing macrophage activation by bacterial components, we hypothesized the LL-37 may also have direct effects on macrophage function. We therefore used gene expression profiling to identify macrophage functions that might be modulated by LL-37. These studies revealed that LL-37 directly up-regulates 29 genes and down-regulated another 20 genes. Among the genes predicted to be up-regulated by LL-37 were those encoding chemokines and chemokine receptors. Consistent with this, LL-37 up-regulated the expression of chemokines in macrophages and the mouse lung (monocyte chemoattractant protein 1), human A549 epithelial cells (IL-8), and whole human blood (monocyte chemoattractant protein 1 and IL-8), without stimulating the proinflammatory cytokine, TNFα. LL-37 also up-regulated the chemokine receptors CXCR-4, CCR2, and IL-8RB. These findings indicate that LL-37 may contribute to the immune response by limiting the damage caused by bacterial products and by recruiting immune cells to the site of infection so that they can clear the infection.


Journal of Immunology | 2000

Cutting Edge: Cationic Antimicrobial Peptides Block the Binding of Lipopolysaccharide (LPS) to LPS Binding Protein

Monisha G. Scott; Anita Vreugdenhil; Wim A. Buurman; Robert E. W. Hancock; Michael R. Gold

We investigated the mechanism by which cationic antimicrobial peptides block the activation of macrophages by LPS. The initial step in LPS signaling is the transfer of LPS to CD14 by LPS binding protein (LBP). Because many cationic antimicrobial peptides bind LPS, we asked whether these peptides block the binding of LPS to LBP. Using an assay that measures the binding of LPS to immobilized LBP, we show for the first time that a variety of structurally diverse cationic antimicrobial peptides block the interaction of LPS with LBP. The relative ability of different cationic peptides to block the binding of LPS to LBP correlated with their ability to block LPS-induced TNF-α production by the RAW 264.7 macrophage cell line.


Journal of Immunology | 2000

Salmonella typhimurium Infection and Lipopolysaccharide Stimulation Induce Similar Changes in Macrophage Gene Expression

Carrie M. Rosenberger; Monisha G. Scott; Michael R. Gold; Robert E. W. Hancock; B. Brett Finlay

Changes in macrophage phenotype induced during infection result from the recognition of bacterial products as well as the action of bacterial virulence factors. We used the unprecedented opportunity provided by gene arrays to simultaneously study the expression of hundreds of genes during Salmonella typhimurium infection of macrophages and to assess the contribution of the bacterial virulence factor, LPS, in initiating the host responses to Salmonella. We found that S. typhimurium infection caused significant changes in the expression of numerous genes encoding chemokines, cell surface receptors, signaling molecules, and transcriptional activators at 4 h postinfection of the RAW 264.7 murine macrophage cell line. Our results revealed changes in the expression of several genes that had not been previously implicated in the host responses to S. typhimurium infection, as well as changes in the expression of several genes previously shown to be regulated by S. typhimurium infection. An overlapping spectrum of genes was expressed in response to virulent S. typhimurium and purified S. typhimurium LPS, reinforcing the major role of this surface molecule in stimulating the early response of macrophages to bacterial infection. The macrophage gene expression profile was further altered by activation with IFN-γ, indicating that host cell responses depend on the activation state of the cell.


Journal of Biological Chemistry | 2004

The Rap GTPases regulate integrin-mediated adhesion, cell spreading, actin polymerization, and Pyk2 tyrosine phosphorylation in B lymphocytes

Sarah J. McLeod; Andrew J. Shum; Rosaline L. Lee; Fumio Takei; Michael R. Gold

Integrin-mediated adhesion plays an important role in B cell development and activation. Signaling initiated by antigens, chemokines, or phorbol esters can rapidly convert integrins to an activated adhesion-competent state. The binding of integrins to their ligands can then induce actin-dependent cell spreading, which can facilitate cell-cell adhesion or cell migration on extracellular matrices. The signaling pathways involved in integrin activation and post-adhesion events in B cells are not completely understood. We have previously shown that anti-Ig antibodies, the chemokine stromal cell-derived factor-1 (SDF-1; CXCL12), and phorbol esters activate the Rap1 and Rap2 GTPases in B cells and that Rap activation is essential for SDF-1-induced B cell migration (McLeod, S. J., Li, A. H. Y., Lee, R. L., Burgess, A. E., and Gold, M. R. (2002) J. Immunol. 169, 1365–1371; Christian, S. L., Lee, R. L., McLeod, S. J., Burgess, A. E., Li, A. H. Y., Dang-Lawson, M., Lin, K. B. L., and Gold, M. R. (2003) J. Biol. Chem. 278, 41756–41767). We show here that preventing Rap activation by expressing Rap-specific GTPase-activating protein II (RapGAPII) significantly decreased lymphocyte function-associated antigen-1- and α4 integrin-dependent binding of murine B cell lines to purified adhesion molecules and to other cells. Conversely, augmenting Rap activation by expressing a constitutively active form of Rap2 enhanced B cell adhesion, showing for the first time that Rap2 can promote integrin activation. We also show that blocking Rap activation inhibited anti-Ig-induced cell spreading and phorbol ester-induced actin polymerization as well as anti-Ig- and SDF-1-induced phosphorylation of Pyk2, a tyrosine kinase involved in morphological changes and chemokine-induced B cell migration. Thus, the Rap GTPases regulate integrin-mediated B cell adhesion as well as processes that control B cell morphology and migration.


Molecular and Cellular Biology | 2002

The direct recruitment of BLNK to immunoglobulin α couples the B-cell antigen receptor to distal signaling pathways

Shara Kabak; Brian J. Skaggs; Michael R. Gold; Michael Affolter; Kelly L. West; Mark S. Foster; Karyn Siemasko; Andrew C. Chan; Ruedi Aebersold; Marcus R. Clark

ABSTRACT Following B-cell antigen receptor (BCR) ligation, the cytoplasmic domains of immunoglobulin α (Igα) and Igβ recruit Syk to initiate signaling cascades. The coupling of Syk to several distal substrates requires linker protein BLNK. However, the mechanism by which BLNK is recruited to the BCR is unknown. Using chimeric receptors with wild-type and mutant Igα cytoplasmic tails we show that the non-immunoreceptor tyrosine-based activation motif (ITAM) tyrosines, Y176 and Y204, are required to activate BLNK-dependent pathways. Subsequent analysis demonstrated that BLNK bound directly to phospho-Y204 and that fusing BLNK to mutated Igα reconstituted downstream signaling events. Moreover, ligation of the endogenous BCR induced Y204 phosphorylation and BLNK recruitment. These data demonstrate that the non-ITAM tyrosines of Igα couple Syk activation to BLNK-dependent pathways.


Journal of Immunology | 2002

The Rap GTPases regulate B cell migration toward the chemokine stromal cell-derived factor-1 (CXCL12): potential role for Rap2 in promoting B cell migration.

Sarah J. McLeod; Anson H. Y. Li; Rosaline L. Lee; Anita E. Burgess; Michael R. Gold

Stromal cell-derived factor-1 (SDF-1) is a potent chemoattractant for B cells and B cell progenitors. Although the binding of SDF-1 to its receptor, CXCR4, activates multiple signaling pathways, the mechanism by which SDF-1 regulates cell migration is not completely understood. In this report we show that activation of the Rap GTPases is important for B cells to migrate toward SDF-1. We found that treating B cells with SDF-1 resulted in the rapid activation of both Rap1 and Rap2. Moreover, blocking the activation of Rap1 and Rap2 via the expression of a Rap-specific GTPase-activating protein significantly reduced the ability of B cells to migrate toward SDF-1. Conversely, expressing a constitutively active form of Rap2 increased SDF-1-induced B cell migration. Thus, the Rap GTPases control cellular processes that are important for B cells to migrate toward SDF-1.


Advances in Immunology | 1993

Biochemistry of B Lymphocyte Activation

Michael R. Gold

The activation of B lymphocytes from resting cells proceeds from the events of early activation to clonal proliferation to final differentiation into either an antibody-secreting plasma cell or a memory B cell. This is a complex activation process marked by several alternative pathways, depending on the nature of the initial antigenic stimulus. Over the past 5-10 years, there has been an explosion of studies examining the biochemical nature of various steps in these pathways. Some of that progress is reviewed here. In particular, we have described in detail what is known about the structure and function of the AgR, as this molecule plays a pivotal role in B cell responses of various types. We have also reviewed recent progress in understanding the mechanism of action of contact-dependent T cell help and of the cytokine receptors, particularly the receptors for IL-2, IL-4, and IL-6. Clearly, all of these areas represent active areas of investigation and great progress can be anticipated in the next few years.


Journal of Immunology | 2000

An α-Helical Cationic Antimicrobial Peptide Selectively Modulates Macrophage Responses to Lipopolysaccharide and Directly Alters Macrophage Gene Expression

Monisha G. Scott; Carrie M. Rosenberger; Michael R. Gold; B. Brett Finlay; Robert E. W. Hancock

Certain cationic antimicrobial peptides block the binding of LPS to LPS-binding protein and reduce the ability of LPS to induce the production of inflammatory mediators by macrophages. To gain a more complete understanding of how LPS activates macrophages and how cationic peptides influence this process, we have used gene array technology to profile gene expression patterns in macrophages treated with LPS in the presence or the absence of the insect-derived cationic antimicrobial peptide CEMA (cecropin-melittin hybrid). We found that CEMA selectively blocked LPS-induced gene expression in the RAW 264.7 macrophage cell line. The ability of LPS to induce the expression of >40 genes was strongly inhibited by CEMA, while LPS-induced expression of another 16 genes was relatively unaffected. In addition, CEMA itself induced the expression of a distinct set of 35 genes, including genes involved in cell adhesion and apoptosis. Thus, CEMA, a synthetic α-helical peptide, selectively modulates the transcriptional response of macrophages to LPS and can alter gene expression in macrophages.


Journal of Immunology | 2002

CD40 Signaling in B Cells Regulates the Expression of the Pim-1 Kinase Via the NF-κB Pathway

Nongliao Zhu; Luis M. Ramirez; Rosaline L. Lee; Nancy S. Magnuson; Gail A. Bishop; Michael R. Gold

The ability of CD40 signaling to regulate B cell growth, survival, differentiation, and Ig class switching involves many changes in gene expression. Using cDNA expression arrays and Northern blotting, we found that CD40 signaling increased the mRNA levels for pim-1, a protooncogene that encodes a serine/threonine protein kinase. Subsequent experiments showed that CD40 engagement also increased both Pim-1 protein levels and Pim-1 kinase activity in B cells. We then investigated the signaling pathways by which CD40 regulates Pim-1 expression and found that CD40 up-regulates Pim-1 primarily via the activation of NF-κB. Inhibiting the activation of NF-κB, either by treating cells with a chemical inhibitor, BAY11-7082, or by inducibly expressing a superrepressor form of IκBα, significantly impaired the ability of CD40 to increase Pim-1 protein levels. Because Pim-1 expression is associated with cell proliferation and survival, we asked whether this correlated with the ability of CD40 signaling to prevent anti-IgM-induced growth arrest in the WEHI-231 murine B cell line, a model for Ag-induced clonal deletion. We found that the anti-IgM-induced growth arrest in WEHI-231 cells correlated with a substantial decrease in Pim-1 levels. In contrast, culturing WEHI-231 cells with either anti-CD40 Abs or with the B cell mitogen LPS, both of which prevent the anti-IgM-induced growth arrest, also prevented the rapid decline in Pim-1 levels. This suggests that Pim-1 could regulate the survival and proliferation of B cells.


Journal of Biological Chemistry | 1998

The Gab1 Protein Is a Docking Site for Multiple Proteins Involved in Signaling by the B Cell Antigen Receptor

Robert J. Ingham; Marina Holgado-Madruga; Charity Siu; Albert J. Wong; Michael R. Gold

Gab1 is a member of the docking/scaffolding protein family which includes IRS-1, IRS-2, c-Cbl, p130 cas , and p62 dok . These proteins contain a variety of protein-protein interaction motifs including multiple tyrosine residues that when phosphorylated can act as binding sites for Src homology 2 (SH2) domain-containing signaling proteins. We show in the RAMOS human B cell line that Gab1 is tyrosine-phosphorylated in response to B cell antigen receptor (BCR) engagement. Moreover, tyrosine phosphorylation of Gab1 correlated with the binding of several SH2-containing signaling proteins to Gab1 including Shc, Grb2, phosphatidylinositol 3-kinase, and the SHP-2 tyrosine phosphatase. Far Western analysis showed that the SH2 domains of Shc, SHP-2, and the p85 subunit of phosphatidylinositol 3-kinase could bind directly to tyrosine-phosphorylated Gab1 isolated from activated RAMOS cells. In contrast, the Grb2 SH2 domain did not bind directly to Gab1 but instead to the Shc and SHP-2 associated with Gab1. We also show that Gab1 is present in the membrane-enriched particulate fraction of RAMOS cells and that Gab1/signaling protein complexes are found in this fraction after BCR engagement. Thus, tyrosine-phosphorylated Gab1 may recruit cytosolic signaling proteins to cellular membranes where they can act on membrane-bound targets. This may be a critical step in the activation of multiple BCR signaling pathways.

Collaboration


Dive into the Michael R. Gold's collaboration.

Top Co-Authors

Avatar

Spencer A. Freeman

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

A L DeFranco

University of California

View shared research outputs
Top Co-Authors

Avatar

May Dang-Lawson

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Robert J. Ingham

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Linda Matsuuchi

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Sarah J. McLeod

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Calvin D. Roskelley

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Monisha G. Scott

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Robert E. W. Hancock

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Rosaline L. Lee

University of British Columbia

View shared research outputs
Researchain Logo
Decentralizing Knowledge