Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Spencer A. Freeman is active.

Publication


Featured researches published by Spencer A. Freeman.


Immunological Reviews | 2014

Phagocytosis: receptors, signal integration, and the cytoskeleton.

Spencer A. Freeman; Sergio Grinstein

Phagocytosis is a remarkably complex and versatile process: it contributes to innate immunity through the ingestion and elimination of pathogens, while also being central to tissue homeostasis and remodeling by clearing effete cells. The ability of phagocytes to perform such diverse functions rests, in large part, on their vast repertoire of receptors. In this review, we address the various receptor types, their mobility in the plane of the membrane, and two modes of receptor crosstalk: priming and synergy. A major section is devoted to the actin cytoskeleton, which not only governs receptor mobility and clustering but also is instrumental in particle engulfment. Four stages of the actin remodeling process are identified and discussed: (i) the ‘resting’ stage that precedes receptor engagement, (ii) the disruption of the cortical actin prior to formation of the phagocytic cup, (iii) the actin polymerization that propels pseudopod extension, and (iv) the termination of polymerization and removal of preassembled actin that are required for focal delivery of endomembranes and phagosomal sealing. These topics are viewed in the larger context of the differentiation and polarization of the phagocytic cells.


Immunity | 2008

The Rap GTPases Regulate B Cell Morphology, Immune-Synapse Formation, and Signaling by Particulate B Cell Receptor Ligands

Kevin Lin; Spencer A. Freeman; Saba Zabetian; Hayley K. Brugger; Michele Weber; Victor Lei; May Dang-Lawson; Kathy W.K. Tse; Rene Santamaria; Facundo D. Batista; Michael R. Gold

B lymphocytes spread and extend membrane processes when searching for antigens and form immune synapses upon contacting cells that display antigens on their surface. Although these dynamic morphological changes facilitate B cell activation, the signaling pathways underlying these processes are not fully understood. We found that activation of the Rap GTPases was essential for these changes in B cell morphology. Rap activation was important for B cell receptor (BCR)- and lymphocyte-function-associated antigen-1 (LFA-1)-induced spreading, for BCR-induced immune-synapse formation, and for particulate BCR ligands to induce localized F-actin assembly and membrane-process extension. Rap activation and F-actin assembly were also required for optimal BCR signaling in response to particulate antigens but not soluble antigens. Thus by controlling B cell morphology and cytoskeletal organization, Rap might play a key role in the activation of B cells by particulate and cell-associated antigens.


Proceedings of the National Academy of Sciences of the United States of America | 2014

(R)-PFI-2 is a potent and selective inhibitor of SETD7 methyltransferase activity in cells

Dalia Barsyte-Lovejoy; Fengling Li; Menno J. Oudhoff; John Howard Tatlock; Aiping Dong; Hong Zeng; Hong Wu; Spencer A. Freeman; Matthieu Schapira; Guillermo Senisterra; Ekaterina Kuznetsova; Richard Marcellus; Abdellah Allali-Hassani; Steven Kennedy; Jean-Philippe Lambert; Amber L. Couzens; Ahmed Aman; Anne-Claude Gingras; Rima Al-awar; Paul V. Fish; Brian S. Gerstenberger; Lee R. Roberts; Caroline L. Benn; Rachel L. Grimley; Mitchell J.S. Braam; Fabio Rossi; Marius Sudol; Peter J. Brown; Mark Edward Bunnage; Dafydd R. Owen

Significance Protein methyltransferases constitute an emerging but undercharacterized class of therapeutic targets with diverse roles in normal human biology and disease. Small-molecule “chemical probes” can be powerful tools for the functional characterization of such enzymes, and here we report the discovery of (R)-PFI-2—a first-in-class, potent, highly selective, and cell-active inhibitor of the methyltransferase activity of SETD7 [SET domain containing (lysine methyltransferase) 7]—and two related compounds for control and chemoproteomics studies. We used these compounds to characterize the role of SETD7 in signaling, in the Hippo pathway, that controls cell growth and organ size. Our work establishes a chemical biology tool kit for the study of the diverse roles of SETD7 in cells and further validates protein methyltransferases as a druggable target class. SET domain containing (lysine methyltransferase) 7 (SETD7) is implicated in multiple signaling and disease related pathways with a broad diversity of reported substrates. Here, we report the discovery of (R)-PFI-2—a first-in-class, potent (Kiapp = 0.33 nM), selective, and cell-active inhibitor of the methyltransferase activity of human SETD7—and its 500-fold less active enantiomer, (S)-PFI-2. (R)-PFI-2 exhibits an unusual cofactor-dependent and substrate-competitive inhibitory mechanism by occupying the substrate peptide binding groove of SETD7, including the catalytic lysine-binding channel, and by making direct contact with the donor methyl group of the cofactor, S-adenosylmethionine. Chemoproteomics experiments using a biotinylated derivative of (R)-PFI-2 demonstrated dose-dependent competition for binding to endogenous SETD7 in MCF7 cells pretreated with (R)-PFI-2. In murine embryonic fibroblasts, (R)-PFI-2 treatment phenocopied the effects of Setd7 deficiency on Hippo pathway signaling, via modulation of the transcriptional coactivator Yes-associated protein (YAP) and regulation of YAP target genes. In confluent MCF7 cells, (R)-PFI-2 rapidly altered YAP localization, suggesting continuous and dynamic regulation of YAP by the methyltransferase activity of SETD7. These data establish (R)-PFI-2 and related compounds as a valuable tool-kit for the study of the diverse roles of SETD7 in cells and further validate protein methyltransferases as a druggable target class.


Developmental Cell | 2013

Control of the Hippo Pathway by Set7-Dependent Methylation of Yap

Menno J. Oudhoff; Spencer A. Freeman; Amber L. Couzens; Frann Antignano; Ekaterina Kuznetsova; Paul H. Min; Jeffrey P. Northrop; Bernhard Lehnertz; Dalia Barsyte-Lovejoy; Masoud Vedadi; C.H. Arrowsmith; Hiroshi Nishina; Michael R. Gold; Fabio Rossi; Anne-Claude Gingras; Colby Zaph

Methylation of nonhistone proteins is emerging as a regulatory mechanism to control protein function. Set7 (Setd7) is a SET-domain-containing lysine methyltransferase that methylates and alters function of a variety of proteins in vitro, but the in vivo relevance has not been established. We found that Set7 is a modifier of the Hippo pathway. Mice that lack Set7 have a larger progenitor compartment in the intestine, coinciding with increased expression of Yes-associated protein (Yap) target genes. Mechanistically, monomethylation of lysine 494 of Yap is critical for cytoplasmic retention. These results identify a methylation-dependent checkpoint in the Hippo pathway.


Nature Communications | 2015

Phosphoinositide 3-kinase enables phagocytosis of large particles by terminating actin assembly through Rac/Cdc42 GTPase-activating proteins

Daniel Schlam; Richard D. Bagshaw; Spencer A. Freeman; Richard F. Collins; Tony Pawson; Gregory D. Fairn; Sergio Grinstein

Phagocytosis is responsible for the elimination of particles of widely disparate sizes, from large fungi or effete cells to small bacteria. Though superficially similar, the molecular mechanisms involved differ: engulfment of large targets requires phosphoinositide 3-kinase (PI3K), while that of small ones does not. Here, we report that inactivation of Rac and Cdc42 at phagocytic cups is essential to complete internalization of large particles. Through a screen of 62 RhoGAP-family members, we demonstrate that ARHGAP12, ARHGAP25 and SH3BP1 are responsible for GTPase inactivation. Silencing these RhoGAPs impairs phagocytosis of large targets. The GAPs are recruited to large—but not small—phagocytic cups by products of PI3K, where they synergistically inactivate Rac and Cdc42. Remarkably, the prominent accumulation of phosphatidylinositol 3,4,5-trisphosphate characteristic of large-phagosome formation is less evident during phagocytosis of small targets, accounting for the contrasting RhoGAP distribution and the differential requirement for PI3K during phagocytosis of dissimilarly sized particles.


Journal of Immunology | 2011

Cofilin-Mediated F-Actin Severing Is Regulated by the Rap GTPase and Controls the Cytoskeletal Dynamics That Drive Lymphocyte Spreading and BCR Microcluster Formation

Spencer A. Freeman; Victor Lei; May Dang-Lawson; Kensaku Mizuno; Calvin D. Roskelley; Michael R. Gold

When lymphocytes encounter APCs bearing cognate Ag, they spread across the surface of the APC to scan for additional Ags. This is followed by membrane contraction and the formation of Ag receptor microclusters that initiate the signaling reactions that lead to lymphocyte activation. Breakdown of the submembrane cytoskeleton is likely to be required for the cytoskeleton reorganization that drives cell spreading and for removing physical barriers that limit Ag receptor mobility. In this report, we show that Ag receptor signaling via the Rap GTPases promotes the dephosphorylation and activation of the actin-severing protein cofilin and that this results in increased severing of cellular actin filaments. Moreover, we show that this cofilin-mediated actin severing is critical for the changes in actin dynamics that drive B and T cell spreading, for the formation of BCR microclusters, and for the increased mobility of BCR microclusters within the plasma membrane after BCR engagement. Finally, using a model APC, we show that activation of this Rap–cofilin signaling module controls the amount of Ag that is gathered into BCR microclusters and that this is directly related to the magnitude of the resulting BCR signaling that is initiated during B cell–APC interactions. Thus, Rap-dependent activation of cofilin is critical for the early cytoskeletal changes and BCR reorganization that are involved in APC-dependent lymphocyte activation.


Cell | 2016

Integrins Form an Expanding Diffusional Barrier that Coordinates Phagocytosis.

Spencer A. Freeman; Jesse Goyette; Wendy Furuya; Elliot C. Woods; Carolyn R. Bertozzi; Wolfgang Bergmeier; Boris Hinz; P. Anton van der Merwe; Raibatak Das; Sergio Grinstein

Phagocytosis is initiated by lateral clustering of receptors, which in turn activates Src-family kinases (SFKs). Activation of SFKs requires depletion of tyrosine phosphatases from the area of particle engagement. We investigated how the major phosphatase CD45 is excluded from contact sites, using single-molecule tracking. The mobility of CD45 increased markedly upon engagement of Fcγ receptors. While individual CD45 molecules moved randomly, they were displaced from the advancing phagocytic cup by an expanding diffusional barrier. By micropatterning IgG, the ligand of Fcγ receptors, we found that the barrier extended well beyond the perimeter of the receptor-ligand engagement zone. Second messengers generated by Fcγ receptors activated integrins, which formed an actin-tethered diffusion barrier that excluded CD45. The expanding integrin wave facilitates the zippering of Fcγ receptors onto the target and integrates the information from sparse receptor-ligand complexes, coordinating the progression and ultimate closure of the phagocytic cup.


Journal of Cell Biology | 2017

VAPs and ACBD5 tether peroxisomes to the ER for peroxisome maintenance and lipid homeostasis

Rong Hua; Derrick T. Cheng; Etienne Coyaud; Spencer A. Freeman; Erminia Di Pietro; Yuqing Wang; Adriano Vissa; Christopher M. Yip; Gregory D. Fairn; Nancy E Braverman; John H. Brumell; William S. Trimble; Brian Raught; Peter K. Kim

Lipid exchange between the endoplasmic reticulum (ER) and peroxisomes is necessary for the synthesis and catabolism of lipids, the trafficking of cholesterol, and peroxisome biogenesis in mammalian cells. However, how lipids are exchanged between these two organelles is not understood. In this study, we report that the ER-resident VAMP-associated proteins A and B (VAPA and VAPB) interact with the peroxisomal membrane protein acyl-CoA binding domain containing 5 (ACBD5) and that this interaction is required to tether the two organelles together, thereby facilitating the lipid exchange between them. Depletion of either ACBD5 or VAP expression results in increased peroxisome mobility, suggesting that VAP–ACBD5 complex acts as the primary ER–peroxisome tether. We also demonstrate that tethering of peroxisomes to the ER is necessary for peroxisome growth, the synthesis of plasmalogen phospholipids, and the maintenance of cellular cholesterol levels. Collectively, our data highlight the importance of VAP–ACBD5–mediated contact between the ER and peroxisomes for organelle maintenance and lipid homeostasis.


Nature Communications | 2015

Toll-like receptor ligands sensitize B-cell receptor signalling by reducing actin-dependent spatial confinement of the receptor

Spencer A. Freeman; Valentin Jaumouillé; Kate Choi; Brian E. Hsu; Harikesh S. Wong; Libin Abraham; Marcia L. Graves; Daniel Coombs; Calvin D. Roskelley; Raibatak Das; Sergio Grinstein; Michael R. Gold

Integrating signals from multiple receptors allows cells to interpret the physiological context in which a signal is received. Here we describe a mechanism for receptor crosstalk in which receptor-induced increases in actin dynamics lower the threshold for signalling by another receptor. We show that the Toll-like receptor ligands lipopolysaccharide and CpG DNA, which are conserved microbial molecules, enhance signalling by the B-cell antigen receptor (BCR) by activating the actin-severing protein cofilin. Single-particle tracking reveals that increased severing of actin filaments reduces the spatial confinement of the BCR within the plasma membrane and increases BCR mobility. This allows more frequent collisions between BCRs and greater signalling in response to low densities of membrane-bound antigen. These findings implicate actin dynamics as a means of tuning receptor signalling and as a mechanism by which B cells distinguish inert antigens from those that are accompanied by indicators of microbial infection.


Cancer Research | 2010

Preventing the Activation or Cycling of the Rap1 GTPase Alters Adhesion and Cytoskeletal Dynamics and Blocks Metastatic Melanoma Cell Extravasation into the Lungs

Spencer A. Freeman; Sarah J. McLeod; Janet Dukowski; Pamela Austin; Crystal C.Y. Lee; Brandie Millen-Martin; Paul Kubes; Donna-Marie McCafferty; Michael R. Gold; Calvin D. Roskelley

The Rap1 GTPase is a master regulator of cell adhesion, polarity, and migration. We show that both blocking Rap1 activation and expressing a constitutively active form of Rap1 reduced the ability of B16F1 melanoma cells to extravasate from the microvasculature and form metastatic lesions in the lungs. This correlated with a decreased ability of the tumor cells to undergo transendothelial migration (TEM) in vitro and form dynamic, F-actin-rich pseudopodia that penetrate capillary endothelial walls in vivo. Using multiple tumor cell lines, we show that the inability to form these membrane protrusions, which likely promote TEM and extravasation, can be explained by altered adhesion dynamics and impaired cell polarization that result when Rap1 activation or cycling is perturbed. Thus, targeting Rap1 could be a useful approach for reducing the metastatic dissemination of tumor cells that undergo active TEM.

Collaboration


Dive into the Spencer A. Freeman's collaboration.

Top Co-Authors

Avatar

Michael R. Gold

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Calvin D. Roskelley

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fabio Rossi

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kelly M. McNagny

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Kevin Lin

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

May Dang-Lawson

University of British Columbia

View shared research outputs
Researchain Logo
Decentralizing Knowledge