Michael R. Heath
University of Strathclyde
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael R. Heath.
Journal of Sea Research | 1997
Michael R. Heath; B. Scott; A.D. Bryant
Abstract Variations in growth of the 1961–1983 year classes of North Sea herring larvae and juveniles from four different stocks in the North Sea have been modelled in a two-stage process. First, the ERSEM transport model and a database of temperature conditions in the North Sea have been used to simulate the year-specific dispersal and timing of recruitment of larvae to a model of juvenile growth. The juvenile model was forced by temperature and continuous plankton recorder (CPR) data, and migration was modelled from survey data on the relative distribution of stock components in the North Sea. The model explains the observed differences in mean growth from hatching to 1.5 years old of herring of different stock origins over the period 1970–1981, and therefore it has been concluded that the growth differences are generated mainly by the hydrographic conditions and plankton abundance along the drift trajectory of the larvae and migration route of the early juveniles. Comparison of the time series of modelled size-at-age for juveniles from the Shetland stock with observations for the same period shows that the model explains short-term year-to-year variability in growth, correctly identifying extreme years, but fails to explain the longer-term underlying trends. The model performed best over the period 1970–1981 when population biomass was uniformly low, and deviated during 1961–1969 when biomass was declining from high levels. The inclusion of population biomass as an independent explanatory variable in the comparison of model results with the longer-term data accounts for up to 58% of the total variance in the observations. Thus, it is concluded that hydrographic and planktonic conditions in the North Sea account for the short-term year-to-year variability in growth, but the major underlying trends over the last 40 years are due primarily to density dependence.
Ecology Letters | 2014
Michael R. Heath; Douglas C. Speirs; John H. Steele
Climate fluctuations and human exploitation are causing global changes in nutrient enrichment of terrestrial and aquatic ecosystems and declining abundances of apex predators. The resulting trophic cascades have had profound effects on food webs, leading to significant economic and societal consequences. However, the strength of cascades–that is the extent to which a disturbance is diminished as it propagates through a food web–varies widely between ecosystems, and there is no formal theory as to why this should be so. Some food chain models reproduce cascade effects seen in nature, but to what extent is this dependent on their formulation? We show that inclusion of processes represented mathematically as density-dependent regulation of either consumer uptake or mortality rates is necessary for the generation of realistic ‘top-down’ cascades in simple food chain models. Realistically modelled ‘bottom-up’ cascades, caused by changing nutrient input, are also dependent on the inclusion of density dependence, but especially on mortality regulation as a caricature of, e.g. disease and parasite dynamics or intraguild predation. We show that our conclusions, based on simple food chains, transfer to a more complex marine food web model in which cascades are induced by varying river nutrient inputs or fish harvesting rates.
Proceedings of the Royal Society of London B: Biological Sciences | 2012
Michael R. Heath; Douglas C. Speirs
Following the repeal in 1962 of a long-standing ban on trawling, yields of demersal fish from the Firth of Clyde, southwest Scotland, increased to a maximum in 1973 and then declined until the directed fishery effectively ceased in the early 2000s. Since then, the only landings of demersal fish from the Firth have been by-catch in the Norway lobster fishery. We analysed changes in biomass density, species diversity and length structure of the demersal fish community between 1927 and 2009 from scientific trawl surveys, and related these to the fishery harvesting rate. As yields collapsed, the community transformed from a state in which biomass was distributed across numerous species (high species evenness) and large maximum length taxa were common, to one in which 90 per cent of the biomass was vested in one species (whiting), and both large individuals and large maximum length species were rare. Species evenness recovered quickly once the directed fishery ceased, but 10 years later, the community was still deficient in large individuals. The changes partly reflected events at a larger regional scale but were more extreme. The lag in response with respect to fishing has implications for attempts at managing a restoration of the ecosystem.
Journal of Sea Research | 1997
A.D. Bryant; Michael R. Heath; William Gurney; D. Beare; W. Robertson
A weight-structured population model is described for Calanus finmarchicus. Results are presented for an area of the northern North Sea for which detailed stage succession data exist, and are discussed in the context of other models of zooplankton population dynamics for that area. The essential simplicity of the model enables embedding in a three-dimensional hydrodynamic scheme representing the northern North Sea (1° × 1° boxes, split into upper 30 m and below). Results of this spatially-resolved model are discussed in the context of a new statistical analysis of C. finmarchicus late-copepodites from the continuous plankton recorder.
Nature Communications | 2014
Michael R. Heath; Robin Cook; Angus I. Cameron; David J. Morris; Douglas C. Speirs
Discarding by fisheries is perceived as contrary to responsible harvesting. Legislation seeking to end the practice is being introduced in many jurisdictions. However, discarded fish are food for a range of scavenging species; so, ending discarding may have ecological consequences. Here we investigate the sensitivity of ecological effects to discarding policies using an ecosystem model of the North Sea—a region where 30–40% of trawled fish catch is currently discarded. We show that landing the entire catch while fishing as usual has conservation penalties for seabirds, marine mammals and seabed fauna, and no benefit to fish stocks. However, combining landing obligations with changes in fishing practices to limit the capture of unwanted fish results in trophic cascades that can benefit birds, mammals and most fish stocks. Our results highlight the importance of considering the broader ecosystem consequences of fishery management policy, since species interactions may dissipate or negate intended benefits.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Sigrún Huld Jónasdóttir; André W. Visser; Katherine Richardson; Michael R. Heath
Significance Every autumn across the North Atlantic, large numbers of zooplankton copepods migrate from the surface waters into the oceans interior to hibernate at depths of 600–1,400 m. Through this migration, they actively transport lipid carbon to below the permanent thermocline, where it is metabolized at a rate comparable to the carbon delivered by sinking detritus. This “lipid pump” has not been included in previous estimates of the deep-ocean carbon sequestration, which are based on either measurements of sinking fluxes of detritus, or estimates of new primary production. Unlike other components of the biological pump, the lipid pump does not strip the surface ocean of nutrients, and decouples carbon sequestration from nutrient replenishment, a process we term the “lipid shunt.” Estimates of carbon flux to the deep oceans are essential for our understanding of global carbon budgets. Sinking of detrital material (“biological pump”) is usually thought to be the main biological component of this flux. Here, we identify an additional biological mechanism, the seasonal “lipid pump,” which is highly efficient at sequestering carbon into the deep ocean. It involves the vertical transport and metabolism of carbon rich lipids by overwintering zooplankton. We show that one species, the copepod Calanus finmarchicus overwintering in the North Atlantic, sequesters an amount of carbon equivalent to the sinking flux of detrital material. The efficiency of the lipid pump derives from a near-complete decoupling between nutrient and carbon cycling—a “lipid shunt,” and its direct transport of carbon through the mesopelagic zone to below the permanent thermocline with very little attenuation. Inclusion of the lipid pump almost doubles the previous estimates of deep-ocean carbon sequestration by biological processes in the North Atlantic.
Continental Shelf Research | 1991
Michael R. Heath; Keith Brander; Peter Munk; P. Rankine
Abstract Vertical distributions of autumn spawned herring larvae were sampled at 10 sites in the North Sea between October 1987 and March 1988 during the Autumn Circulation Experiment (ACE). Several different patterns of vertical migrations occurred. Diel variations in the vertical distributions were found in all stages of development, from yolk-sac to pre-metamorphosis (35 mm). During diel migrations larvae were closer to the surface during daylight than at night. The amplitude of diel vertical migrations increased with the length of the larvae. Semi-diel cycles in the vertical distributions were rare, and appeared to be related to the tidal cycle rather than crepuscular periods. Diel cycles in vertical distribution could not be detected at sites in the southeastern North Sea, characterized by water depths less than 45 m, high vertical shear and high light attenuation coefficients. It is suggested that strong turbulence inhibits diel vertical migrations by herring larvae. This feature has important consequences for the advection of larvae in the North Sea.
Journal of Eukaryotic Microbiology | 2008
David J. S. Montagnes; John T. Allen; Louise Brown; Celia Bulit; Russell Davidson; Carlos Díaz-Ávalos; Sophie Fielding; Michael R. Heath; N.P. Holliday; Jens Rasmussen; Richard Sanders; Joanna J. Waniek; David Wilson
ABSTRACT. Myrionecta rubra, a ubiquitous planktonic ciliate, has received much attention due to its wide distribution, occurrence as a red tide organism, and unusual cryptophyte endosymbiont. Although well studied in coastal waters, M. rubra is poorly examined in the open ocean. In the Irminger Basin, North Atlantic, the abundance of M. rubra was 0–5 cells/ml, which is low compared with that found in coastal areas. Distinct patchiness (100 km) was revealed by geostatistical analysis. Multiple regression indicated there was little relationship between M. rubra abundance and a number of environmental factors, with the exception of temperature and phytoplankton biomass, which influenced abundance in the spring. We also improve on studies that indicate distinct size classes of M. rubra; we statistically recognise four significantly distinct width classes (5–16, 12–23, 18–27, 21–33 μm), which decrease in abundance with increasing size. A multinomial logistic regression revealed the main variable correlated with this size distribution was ambient nitrate concentration. Finally, we propose a hypothesis for the distribution of sizes, involving nutrients, feeding, and dividing of the endosymbiont.
Journal of Sea Research | 1997
Michael R. Heath; W. Robertson; John Mardaljevic; William Gurney
The population dynamics of a marine zooplankton species in the Fair Isle Current off northern Scotland have been investigated by modelling and field study. An age- and weight-structured model of a population of the copepods Calanus finmarchicus and Calanus helgolandicus was embedded in a biomass based ecosystem model comprising nutrients, phytoplankton, and other non-Calanus zooplankton. The model was configured to represent a Lagrangian water column drifting in the Fair Isle Current off the north of Scotland during June 1988, with physical characteristics derived from the results of a three-dimensional hydrodynamic model of the northwest European shelf. The time-series results from the model were compared to data from a semi-synoptic field study by assuming the system to be short-term steady state and transposing the spatially resolved field observations into pseudo-time series along the modelled column drift track. The hydrodynamic model correctly reproduced the general physical characteristics of the system which were destratification of an initially stratified water column as a result of advection through a tidally energetic mixing zone, and subsequent re-establishment of stratification with distance downstream. The biological components of the model were broadly successful at reproducing the main features of the phytoplankton biomass response to the physical processes. The field data indicated that, despite the short-term changes in phytoplankton abundance along the drift track, the stage composition and biomass of the Calanus population was relatively stable. However, the model revealed that the main diagnostic features of the response were at the individual level, reflected in the weight at age distribution and reproductive output. The study highlights the difficulty of obtaining adequate data for testing complex models of zooplankton responses to short-term spatio-temporal variations in physical forcing.
Frontiers in Marine Science | 2016
Michael St. John; Ángel Borja; Guillem Chust; Michael R. Heath; Ivo Grigorov; Patrizio Mariani; Adrian P. Martin; Ricardo Serrão Santos
In the face of increasing anthropogenic pressures acting on the Earth system, urgent actions are needed to guarantee efficient resource management and sustainable development for our growing human population. Our oceans - the largest underexplored component of the Earth system - are potentially home for a large number of new resources, which can directly impact upon food security and the wellbeing of humanity. However, the extraction of these resources has repercussions for biodiversity and the oceans ability to sequester green house gases and thereby climate. In the search for “new resources” to unlock the economic potential of the global oceans, recent observations have identified a large unexploited biomass of mesopelagic fish living in the deep ocean. This biomass has recently been estimated to be 10 billion metric tonnes, 10 times larger than previous estimates however the real biomass is still in question. If we are able to exploit this community at sustainable levels without impacting upon biodiversity and compromising the oceans’ ability to sequester carbon, we can produce more food and potentially many new nutraceutical products. However, to meet the needs of present generations without compromising the needs of future generations, we need to guarantee a sustainable exploitation of these resources. To do so requires a holistic assessment of the community and an understanding of the mechanisms controlling this biomass, its role in the preservation of biodiversity and its influence on climate as well as management tools able to weigh the costs and benefits of exploitation of this community.