Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John K. Pinnegar is active.

Publication


Featured researches published by John K. Pinnegar.


Global Change Biology | 2014

Climate change and fishing: a century of shifting distribution in North Sea cod.

Georg H. Engelhard; David Righton; John K. Pinnegar

Globally, spatial distributions of fish stocks are shifting but although the role of climate change in range shifts is increasingly appreciated, little remains known of the likely additional impact that high levels of fishing pressure might have on distribution. For North Sea cod, we show for the first time and in great spatial detail how the stock has shifted its distribution over the past 100 years. We digitized extensive historical fisheries data from paper charts in UK government archives and combined these with contemporary data to a time-series spanning 1913–2012 (excluding both World Wars). New analysis of old data revealed that the current distribution pattern of cod – mostly in the deeper, northern- and north-easternmost parts of the North Sea – is almost opposite to that during most of the Twentieth Century – mainly concentrated in the west, off England and Scotland. Statistical analysis revealed that the deepening, northward shift is likely attributable to warming; however, the eastward shift is best explained by fishing pressure, suggestive of significant depletion of the stock from its previous stronghold, off the coasts of England and Scotland. These spatial patterns were confirmed for the most recent 3½ decades by data from fisheries-independent surveys, which go back to the 1970s. Our results demonstrate the fundamental importance of both climate change and fishing pressure for our understanding of changing distributions of commercially exploited fish.


PLOS ONE | 2013

Predicting the Impact of Climate Change on Threatened Species in UK Waters

Miranda C. Jones; Stephen Dye; Jose A. Fernandes; Thomas L. Frölicher; John K. Pinnegar; Rachel Warren; William W. L. Cheung

Global climate change is affecting the distribution of marine species and is thought to represent a threat to biodiversity. Previous studies project expansion of species range for some species and local extinction elsewhere under climate change. Such range shifts raise concern for species whose long-term persistence is already threatened by other human disturbances such as fishing. However, few studies have attempted to assess the effects of future climate change on threatened vertebrate marine species using a multi-model approach. There has also been a recent surge of interest in climate change impacts on protected areas. This study applies three species distribution models and two sets of climate model projections to explore the potential impacts of climate change on marine species by 2050. A set of species in the North Sea, including seven threatened and ten major commercial species were used as a case study. Changes in habitat suitability in selected candidate protected areas around the UK under future climatic scenarios were assessed for these species. Moreover, change in the degree of overlap between commercial and threatened species ranges was calculated as a proxy of the potential threat posed by overfishing through bycatch. The ensemble projections suggest northward shifts in species at an average rate of 27 km per decade, resulting in small average changes in range overlap between threatened and commercially exploited species. Furthermore, the adverse consequences of climate change on the habitat suitability of protected areas were projected to be small. Although the models show large variation in the predicted consequences of climate change, the multi-model approach helps identify the potential risk of increased exposure to human stressors of critically endangered species such as common skate (Dipturus batis) and angelshark (Squatina squatina).


Proceedings of the National Academy of Sciences of the United States of America | 2014

Public awareness, concerns, and priorities about anthropogenic impacts on marine environments

Stefan Gelcich; Paul Buckley; John K. Pinnegar; Jason Chilvers; Irene Lorenzoni; Geraldine Terry; Matías Guerrero; Juan Carlos Castilla; Abel Valdebenito; Carlos M. Duarte

Significance We report the results of a 10,106-person pan-European survey of public awareness, concerns, and priorities about marine anthropogenic impacts as a way to inform both science and policy initiatives in achieving marine sustainability. Results enable scientists and policymakers to understand how the public relates to the marine environment and how they frame impacts and can help make managerial, scientific, and policy priorities more responsive to public values. Numerous international bodies have advocated the development of strategies to achieve the sustainability of marine environments. Typically, such strategies are based on information from expert groups about causes of degradation and policy options to address them, but these strategies rarely take into account assessed information about public awareness, concerns, and priorities. Here we report the results of a pan-European survey of public perceptions about marine environmental impacts as a way to inform the formation of science and policy priorities. On the basis of 10,106 responses to an online survey from people in 10 European nations, spanning a diversity of socioeconomic and geographical areas, we examine the public’s informedness and concern regarding marine impacts, trust in different information sources, and priorities for policy and funding. Results show that the level of concern regarding marine impacts is closely associated with the level of informedness and that pollution and overfishing are two areas prioritized by the public for policy development. The level of trust varies greatly among different information sources and is highest for academics and scholarly publications but lower for government or industry scientists. Results suggest that the public perceives the immediacy of marine anthropogenic impacts and is highly concerned about ocean pollution, overfishing, and ocean acidification. Eliciting public awareness, concerns, and priorities can enable scientists and funders to understand how the public relates to marine environments, frame impacts, and align managerial and policy priorities with public demand.


Ecology | 2008

PREDATOR AND PREY BODY SIZES IN MARINE FOOD WEBS

Carolyn Barnes; D.M. Bethea; Richard D. Brodeur; Jérôme Spitz; Vincent Ridoux; C. Pusineri; B.C. Chase; M.E. Hunsicker; Francis Juanes; A. Kellermann; John Lancaster; F. Ménard; F.-X. Bard; P. Munk; John K. Pinnegar; F.S. Scharf; R.A. Rountree; Konstantinos I. Stergiou; C. Sassa; Ana Sabatés; Simon Jennings

Knowledge of relationships between predator size and prey size are needed to describe interactions of species and size classes in food webs. Most estimates of predator and prey sizes have been based on dietary studies and apply to small numbers of species in a relatively narrow size range. These estimates may or may not be representative of values for other groups of species and body sizes or for other locations. Marine predator and prey size data associated with published literature were identified and collated to produce a single data set. If predator or prey length of mass were not measured in the original study, the length or mass was calculated using length–mass relationships. The data set consists of 34 931 records from 27 locations covering a wide range of environmental conditions from the tropics to the poles and for 93 types of predator with sizes ranging from 0.1 mg to over 415 kg and 174 prey types with sizes from 75 pg to over 4.5 kg. Each record includes: predator and prey scientific names, c...


Global Change Biology | 2016

Quantifying heterogeneous responses of fish community size structure using novel combined statistical techniques

Abigail Marshall; Grant R. Bigg; Sonja M. van Leeuwen; John K. Pinnegar; Hua-Liang Wei; Thomas J. Webb; Julia L. Blanchard

Abstract To understand changes in ecosystems, the appropriate scale at which to study them must be determined. Large marine ecosystems (LMEs) cover thousands of square kilometres and are a useful classification scheme for ecosystem monitoring and assessment. However, averaging across LMEs may obscure intricate dynamics within. The purpose of this study is to mathematically determine local and regional patterns of ecological change within an LME using empirical orthogonal functions (EOFs). After using EOFs to define regions with distinct patterns of change, a statistical model originating from control theory is applied (Nonlinear AutoRegressive Moving Average with eXogenous input – NARMAX) to assess potential drivers of change within these regions. We have selected spatial data sets (0.5° latitude × 1°longitude) of fish abundance from North Sea fisheries research surveys (spanning 1980–2008) as well as of temperature, oxygen, net primary production and a fishing pressure proxy, to which we apply the EOF and NARMAX methods. Two regions showed significant changes since 1980: the central North Sea displayed a decrease in community size structure which the NARMAX model suggested was linked to changes in fishing; and the Norwegian trench region displayed an increase in community size structure which, as indicated by NARMAX results, was primarily linked to changes in sea‐bottom temperature. These regions were compared to an area of no change along the eastern Scottish coast where the model determined the community size structure was most strongly associated to net primary production. This study highlights the multifaceted effects of environmental change and fishing pressures in different regions of the North Sea. Furthermore, by highlighting this spatial heterogeneity in community size structure change, important local spatial dynamics are often overlooked when the North Sea is considered as a broad‐scale, homogeneous ecosystem (as normally is the case within the political Marine Strategy Framework Directive).


Journal of Fish Biology | 2013

Use of morphological characteristics to define functional groups of predatory fishes in the Celtic Sea

Yves Reecht; Marie-Joëlle Rochet; Verena M. Trenkel; Simon Jennings; John K. Pinnegar

An ecomorphological method was developed, with a focus on predation functions, to define functional groups in the Celtic Sea fish community. Eleven functional traits, measured for 930 individuals from 33 species, led to 11 functional groups. Membership of functional groups was linked to body size and taxonomy. For seven species, there were ontogenetic changes in group membership. When diet composition, expressed as the proportions of different prey types recorded in stomachs, was compared among functional groups, morphology-based predictions accounted for 28-56% of the interindividual variance in prey type. This was larger than the 12-24% of variance that could be explained solely on the basis of body size.


PLOS ONE | 2012

Influence of climate change and trophic coupling across four trophic levels in the Celtic Sea.

Valentina Lauria; Martin J. Attrill; John K. Pinnegar; Andy Brown; Martin Edwards; Stephen C. Votier

Climate change has had profound effects upon marine ecosystems, impacting across all trophic levels from plankton to apex predators. Determining the impacts of climate change on marine ecosystems requires understanding the direct effects on all trophic levels as well as indirect effects mediated by trophic coupling. The aim of this study was to investigate the effects of climate change on the pelagic food web in the Celtic Sea, a productive shelf region in the Northeast Atlantic. Using long-term data, we examined possible direct and indirect ‘bottom-up’ climate effects across four trophic levels: phytoplankton, zooplankton, mid-trophic level fish and seabirds. During the period 1986–2007, although there was no temporal trend in the North Atlantic Oscillation index (NAO), the decadal mean Sea Surface Temperature (SST) in the Celtic Sea increased by 0.66±0.02°C. Despite this, there was only a weak signal of climate change in the Celtic Sea food web. Changes in plankton community structure were found, however this was not related to SST or NAO. A negative relationship occurred between herring abundance (0- and 1-group) and spring SST (0-group: p = 0.02, slope = −0.305±0.125; 1-group: p = 0.04, slope = −0.410±0.193). Seabird demographics showed complex species–specific responses. There was evidence of direct effects of spring NAO (on black-legged kittiwake population growth rate: p = 0.03, slope = 0.0314±0.014) as well as indirect bottom-up effects of lagged spring SST (on razorbill breeding success: p = 0.01, slope = −0.144±0.05). Negative relationships between breeding success and population growth rate of razorbills and common guillemots may be explained by interactions between mid-trophic level fish. Our findings show that the impacts of climate change on the Celtic Sea ecosystem is not as marked as in nearby regions (e.g. the North Sea), emphasizing the need for more research at regional scales.


Proceedings of the Royal Society of London. Series B, Biological Sciences | 2011

Universal power-law diet partitioning by marine fish and squid with surprising stability–diversity implications

Axel G. Rossberg; Keith D. Farnsworth; Keisuke Satoh; John K. Pinnegar

A central question in community ecology is how the number of trophic links relates to community species richness. For simple dynamical food-web models, link density (the ratio of links to species) is bounded from above as the number of species increases; but empirical data suggest that it increases without bounds. We found a new empirical upper bound on link density in large marine communities with emphasis on fish and squid, using novel methods that avoid known sources of bias in traditional approaches. Bounds are expressed in terms of the diet-partitioning function (DPF): the average number of resources contributing more than a fraction f to a consumers diet, as a function of f. All observed DPF follow a functional form closely related to a power law, with power-law exponents independent of species richness at the measurement accuracy. Results imply universal upper bounds on link density across the oceans. However, the inherently scale-free nature of power-law diet partitioning suggests that the DPF itself is a better defined characterization of network structure than link density.


PLOS ONE | 2015

Fishing for space: fine-scale multi-sector maritime activities influence fisher location choice.

Alex Tidd; Paul Marchal; John K. Pinnegar; Julia L. Blanchard; E. J. Milner-Gulland

The European Union and other states are moving towards Ecosystem Based Fisheries Management to balance food production and security with wider ecosystem concerns. Fishing is only one of several sectors operating within the ocean environment, competing for renewable and non-renewable resources that overlap in a limited space. Other sectors include marine mining, energy generation, recreation, transport and conservation. Trade-offs of these competing sectors are already part of the process but attempts to detail how the seas are being utilised have been primarily based on compilations of data on human activity at large spatial scales. Advances including satellite and shipping automatic tracking enable investigation of factors influencing fishers’ choice of fishing grounds at spatial scales relevant to decision-making, including the presence or avoidance of activities by other sectors. We analyse the determinants of English and Welsh scallop-dredging fleet behaviour, including competing sectors, operating in the eastern English Channel. Results indicate aggregate mining activity, maritime traffic, increased fishing costs, and the English inshore 6 and French 12 nautical mile limits negatively impact fishers’ likelihood of fishing in otherwise suitable areas. Past success, net-benefits and fishing within the 12 NM predispose fishers to use areas. Systematic conservation planning has yet to be widely applied in marine systems, and the dynamics of spatial overlap of fishing with other activities have not been studied at scales relevant to fisher decision-making. This study demonstrates fisher decision-making is indeed affected by the real-time presence of other sectors in an area, and therefore trade-offs which need to be accounted for in marine planning. As marine resource extraction demands intensify, governments will need to take a more proactive approach to resolving these trade-offs, and studies such as this will be required as the evidential foundation for future seascape planning.


Scientific Reports | 2016

SCUBA divers as oceanographic samplers: The potential of dive computers to augment aquatic temperature monitoring

Serena Wright; Tom Hull; D. B. Sivyer; David A. Pearce; John K. Pinnegar; Martin Sayer; Andrew Mogg; Elaine Azzopardi; Steve Gontarek; Kieran Hyder

Monitoring temperature of aquatic waters is of great importance, with modelled, satellite and in-situ data providing invaluable insights into long-term environmental change. However, there is often a lack of depth-resolved temperature measurements. Recreational dive computers routinely record temperature and depth, so could provide an alternate and highly novel source of oceanographic information to fill this data gap. In this study, a citizen science approach was used to obtain over 7,000 scuba diver temperature profiles. The accuracy, offset and lag of temperature records was assessed by comparing dive computers with scientific conductivity-temperature-depth instruments and existing surface temperature data. Our results show that, with processing, dive computers can provide a useful and novel tool with which to augment existing monitoring systems all over the globe, but especially in under-sampled or highly changeable coastal environments.

Collaboration


Dive into the John K. Pinnegar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen Dye

Centre for Environment

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simon Jennings

University of East Anglia

View shared research outputs
Top Co-Authors

Avatar

Miranda C. Jones

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Edwards

Université catholique de Louvain

View shared research outputs
Researchain Logo
Decentralizing Knowledge