Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Rosario Defelippis is active.

Publication


Featured researches published by Michael Rosario Defelippis.


Journal of Biological Chemistry | 1996

Identification of essential residues for the catalytic function of 85-kDa cytosolic phospholipase A2. Probing the role of histidine, aspartic acid, cysteine, and arginine.

Richard Todd Pickard; X. Grace Chiou; Beth A. Strifler; Michael Rosario Defelippis; Paul A. Hyslop; Ann Louise Tebbe; Ying K. Yee; Laure J. Reynolds; Edward A. Dennis; Ruth M. Kramer; John D. Sharp

Cytosolic phospholipase A2 (cPLA2) hydrolyzes the sn-2-acyl ester bond of phospholipids and shows a preference for arachidonic acid-containing substrates. We found previously that Ser-228 is essential for enzyme activity and is likely to function as a nucleophile in the catalytic center of the enzyme (Sharp, J. D., White, D. L., Chiou, X. G., Goodson, T., Gamboa, G. C., McClure, D., Burgett, S., Hoskins, J., Skatrud, P. L., Sportsman, J. R., Becker, G. W., Kang, L. H., Roberts, E. F., and Kramer, R. M. (1991) J. Biol. Chem. 266, 14850-14853). cPLA2 contains a catalytic aspartic acid motif common to the subtilisin family of serine proteases. Substitution within this motif of Ala for Asp-549 completely inactivated the enzyme, and substitutions with either glutamic acid or asparagine reduced activity 2000- and 300-fold, respectively. Additionally, using mutants with cysteine replaced by alanine, we found that Cys-331 is responsible for the enzymes sensitivity to N-ethylmaleimide. Surprisingly, substituting alanine for any of the 19 histidines did not produce inactive enzyme, demonstrating that a classical serine-histidine-aspartate mechanism does not operate in this hydrolase. We found that substituting alanine or histidine for Arg-200 did produce inactive enzyme, while substituting lysine reduced activity 200-fold. Results obtained with the lysine mutant (R200K) and a coumarin ester substrate suggest no specific interaction between Arg-200 and the phosphoryl group of the phospholipid substrate. Arg-200, Ser-228, and Asp-549 are conserved in cPLA2 from six species and also in four nonmammalian phospholipase B enzymes. Our results, supported by circular dichroism, provide evidence that Asp-549 and Arg-200 are critical to the enzymes function and suggest that the cPLA2 catalytic center is novel.


Biophysical Journal | 1998

Atomic Force Microscopy of Crystalline Insulins: The Influence of Sequence Variation on Crystallization and Interfacial Structure

Christopher M. Yip; Mark L. Brader; Michael Rosario Defelippis; Michael D. Ward

The self-association of proteins is influenced by amino acid sequence, molecular conformation, and the presence of molecular additives. In the presence of phenolic additives, LysB28ProB29 insulin, in which the C-terminal prolyl and lysyl residues of wild-type human insulin have been inverted, can be crystallized into forms resembling those of wild-type insulins in which the protein exists as zinc-complexed hexamers organized into well-defined layers. We describe herein tapping-mode atomic force microscopy (TMAFM) studies of single crystals of rhombohedral (R3) LysB28ProB29 that reveal the influence of sequence variation on hexamer-hexamer association at the surface of actively growing crystals. Molecular scale lattice images of these crystals were acquired in situ under growth conditions, enabling simultaneous identification of the rhombohedral LysB28ProB29 crystal form, its orientation, and its dynamic growth characteristics. The ability to obtain crystallographic parameters on multiple crystal faces with TMAFM confirmed that bovine and porcine insulins grown under these conditions crystallized into the same space group as LysB28ProB29 (R3), enabling direct comparison of crystal growth behavior and the influence of sequence variation. Real-time TMAFM revealed hexamer vacancies on the (001) terraces of LysB28ProB29, and more rounded dislocation noses and larger terrace widths for actively growing screw dislocations compared to wild-type bovine and porcine insulin crystals under identical conditions. This behavior is consistent with weaker interhexamer attachment energies for LysB28ProB29 at active growth sites. Comparison of the single crystal x-ray structures of wild-type insulins and LysB28ProB29 suggests that differences in protein conformation at the hexamer-hexamer interface and accompanying changes in interhexamer bonding are responsible for this behavior. These studies demonstrate that subtle changes in molecular conformation due to a single sequence inversion in a region critical for insulin self-association can have a significant effect on the crystallization of proteins.


Pharmaceutical Research | 1997

Assembly and Dissociation of Human Insulin and LysB28ProB29-Insulin Hexamers: A Comparison Study

Duane T. Birnbaum; Maureen A. Kilcomons; Michael Rosario Defelippis; John Michael Beals

AbstractPurpose. Investigations into the kinetic assembly and dissociation of hexameric LysB28ProB29-human insulin (LysPro), a rapid-acting insulin analog produced by the sequence inversion of amino acids at positions B28 and B29, were designed to explain the impact that the sequence inversion has on the formulation and pharmacokinetics of the insulin analog. Methods. The kinetics of phenolic ligand binding to human insulin and LysPro were studied by stopped-flow spectroscopy. The kinetics of R6 hexamer disruption were studied by extraction of Co(II) with EDTA. Results. Phenolic ligand binding to human insulin yielded rate constants for a fast and slow phase that increased with increasing ligand concentration and are attributed to the T6 → T3R3 and T3R3 → R6 transitions, respectively. However, the kinetics of phenolic ligand binding with LysPro was dominated by rates of hexamer assembly. The kinetic differences between the insulin species are attributed to alterations at the monomer-monomer interface in the dimer subunit of the LysPro analog. The extraction of Co(II) from both hexameric complexes by EDTA chelation is slow at pH 8.0 and highly dependent on ligand concentration. Cobalt extraction from LysPro was pH dependent. Of the various phenolic ligands tested, the relative affinities for binding to the human and LysPro hexamer are resorcinol > phenol > m-cresol. Conclusions. The extraction data support the formation of an R6-type LysPro hexamer under formulation conditions, i.e., in the presence of divalent metal and phenolic ligand, that is similar in nature to that observed in insulin. However, the formation kinetics of LysPro identify a radically different monomeric assembly process that may help explain the more rapid pharmacokinetics observed with the hexameric formulation of LysPro insulin relative to human insulin.


Pharmaceutical Research | 1998

Self-Association Properties of Monomeric Insulin Analogs Under Formulation Conditions

Jane P. Richards; Mary P. Stickelmeyer; David B. Flora; Ronald E. Chance; Bruce H. Frank; Michael Rosario Defelippis

AbstractPurpose. The purpose of the current study was to investigate the effects of two important excipients, zinc and m-cresol, on the self-association properties of a series of monomeric insulin analogs. In this way, the effects on formulation behavior of individual amino acid substitutions in the C-terminal region of the insulin B-chain could be compared. Methods. The self-association of ten insulin analogs was monitored by equilibrium and velocity analytical ultracentrifugation under three different conditions: (i) in neutral buffer alone; (ii) in neutral buffer containing zinc ion; and (iii) in neutral buffer containing both zinc ion and phenolic preservative (a typical condition for insulin formulations). The self-association properties of these analogs were compared to those of human insulin and the rapid-acting insulin analog LysB28ProB29-human insulin. Results. The analogs in the current study exhibited a wide range of association properties when examined in neutral buffer alone or in neutral buffer containing zinc ion. However, all of these analogs had association properties similar to human insulin in the presence of both zinc and m-cresol. Under these formulation conditions each analog had an apparent sedimentation coefficient of s* = 2.9−3.1 S, which corresponds to the insulin hexamer. Conclusions. Analogs with changes in the B27−B29 region of human insulin form soluble hexamers in the presence of both zinc and m-cresol, and m-cresol binding overrides the otherwise destabilizing effects of these mutations on self assembly.


Biophysical Journal | 2000

Structural Studies of a Crystalline Insulin Analog Complex with Protamine by Atomic Force Microscopy

Christopher M. Yip; Mark L. Brader; Bruce H. Frank; Michael Rosario Defelippis; Michael D. Ward

Crystallographic studies of insulin-protamine complexes, such as neutral protamine Hagedorn (NPH) insulin, have been hampered by high crystal solvent content, small crystal dimensions, and extensive disorder in the protamine molecules. We report herein in situ tapping mode atomic force microscopy (TMAFM) studies of crystalline neutral protamine Lys(B28)Pro(B29) (NPL), a complex of Lys(B28)Pro(B29) insulin, in which the C-terminal prolyl and lysyl residues of human insulin are inverted, and protamine that is used as an intermediate time-action therapy for treating insulin-dependent diabetes. Tapping mode AFM performed at 6 degrees C on bipyramidally tipped tetragonal rod-shaped NPL crystals revealed large micron-sized islands separated by 44-A tall steps. Lattice images obtained by in situ TMAFM phase and height imaging on these islands were consistent with the arrangement of individual insulin-protamine complexes on the P4(1)2(1)2 (110) crystal plane of NPH, based on a low-resolution x-ray diffraction structure of NPH, arguing that the NPH and NPL insulins are isostructural. Superposition of the height and phase images indicated that tip-sample adhesion was larger in the interstices between NPL complexes in the (110) crystal plane than over the individual complexes. These results demonstrate the utility of low-temperature TMAFM height and phase imaging for the structural characterization of biomolecular complexes.


Analytical Biochemistry | 2013

An automated robotic platform for rapid profiling oligosaccharide analysis of monoclonal antibodies directly from cell culture

Margaret Doherty; Jonathan Bones; Niaobh McLoughlin; Jayne E. Telford; Bryan J. Harmon; Michael Rosario Defelippis; Pauline M. Rudd

Oligosaccharides attached to Asn297 in each of the CH2 domains of monoclonal antibodies play an important role in antibody effector functions by modulating the affinity of interaction with Fc receptors displayed on cells of the innate immune system. Rapid, detailed, and quantitative N-glycan analysis is required at all stages of bioprocess development to ensure the safety and efficacy of the therapeutic. The high sample numbers generated during quality by design (QbD) and process analytical technology (PAT) create a demand for high-performance, high-throughput analytical technologies for comprehensive oligosaccharide analysis. We have developed an automated 96-well plate-based sample preparation platform for high-throughput N-glycan analysis using a liquid handling robotic system. Complete process automation includes monoclonal antibody (mAb) purification directly from bioreactor media, glycan release, fluorescent labeling, purification, and subsequent ultra-performance liquid chromatography (UPLC) analysis. The entire sample preparation and commencement of analysis is achieved within a 5-h timeframe. The automated sample preparation platform can easily be interfaced with other downstream analytical technologies, including mass spectrometry (MS) and capillary electrophoresis (CE), for rapid characterization of oligosaccharides present on therapeutic antibodies.


Journal of Pharmaceutical Sciences | 2015

Subvisible (2–100 μm) Particle Analysis During Biotherapeutic Drug Product Development: Part 1, Considerations and Strategy

Linda O. Narhi; Vincent John Corvari; Dean C. Ripple; Nataliya Afonina; Irene Cecchini; Michael Rosario Defelippis; Patrick Garidel; Andrea Herre; Atanas V. Koulov; Tony Lubiniecki; Hanns-Christian Mahler; Paolo Mangiagalli; Douglas P. Nesta; Bernardo Perez-Ramirez; Alla Polozova; Mara Rossi; Roland Schmidt; Robert Simler; Satish K. Singh; Thomas M. Spitznagel; Andrew Weiskopf; Klaus Wuchner

Measurement and characterization of subvisible particles (defined here as those ranging in size from 2 to 100 μm), including proteinaceous and nonproteinaceous particles, is an important part of every stage of protein therapeutic development. The tools used and the ways in which the information generated is applied depends on the particular product development stage, the amount of material, and the time available for the analysis. In order to compare results across laboratories and products, it is important to harmonize nomenclature, experimental protocols, data analysis, and interpretation. In this manuscript on perspectives on subvisible particles in protein therapeutic drug products, we focus on the tools available for detection, characterization, and quantification of these species and the strategy around their application.


Biochimica et Biophysica Acta | 1995

Acid stabilization of human growth hormone equilibrium folding intermediates

Michael Rosario Defelippis; Maureen A. Kilcomons; Mary Patricia Lents; Karen M. Youngman; Henry A. Havel

Equilibrium denaturation experiments were performed on human growth hormone (hGH) under acidic conditions (pH 1.5-3.0) and different protein concentrations. At 0.1 mg/ml hGH using intrinsic tryptophan fluorescence and far-UV circular dichroism (CD) detection, midpoint values of 4.6 M GdnHCl were observed that are identical to those obtained at neutral pH. However, the delta G values were reduced at pH 2.5 relative to pH 8.0 (10.5 vs. 15 kcal/mol). Increasing the protein concentration to 1 mg/ml resulted in a biphasic denaturation profile by far-UV CD detection at 222 nm, while near-UV CD measurements at 295 nm yielded a cooperative transition with a midpoint value of 3.6 M GdnHCl. These results indicate that equilibrium intermediates having a propensity to aggregate are highly populated under acid conditions. Static light scattering measurements performed under partial unfolding conditions (4.5 M GdnHCl) at pH 2.5 confirmed the existence of a large molecular weight (congruent to 80 kDa) self-associated intermediate. No evidence of aggregation was found for hGH under acid conditions in the absence of denaturant, indicating that self-association results from the formation of an intermediate. Equilibrium GdnHCl concentration-jump experiments confirmed that association only occurs from an intermediate species and not from any other conformational state, and formation of the self-associated intermediate can lead to irreversible loss of protein due to precipitation. These results demonstrate that acid stabilizes equilibrium folding intermediates of hGH.


Analytical Biochemistry | 2009

Analysis of 3-(acetylamino)-6-aminoacridine-derivatized oligosaccharides from recombinant monoclonal antibodies by liquid chromatography―mass spectrometry

Ambrose Clarke; Bryan J. Harmon; Michael Rosario Defelippis

Glycosylation has been established as playing a pivotal role in various aspects of recombinant monoclonal antibodies (MAbs), ranging from pharmacokinetics to enhancement of effector function. Consequently, characterization of these oligosaccharides is of great importance and requires sensitive analytical techniques. Here we present a method for the rapid elucidation of 3-(acetylamino)-6-aminoacridine-labeled N-glycans present on MAbs using liquid chromatography-mass spectrometry. The technique uses the benefits of ultra-performance liquid chromatography systems in conjunction with small-particle-size amide columns capable of generating a fluorescence glycan profile of a MAb in 30 min, reducing the current run time by a factor of 6. The method is also compatible with online electrospray mass spectrometry, permitting the identification of glycans present. Overall, this strategy allows the confident determination of N-glycans present on recombinant MAbs in a significantly reduced amount of time.


Biologicals | 2015

Subvisible (2–100 μm) particle analysis during biotherapeutic drug product development: Part 2, experience with the application of subvisible particle analysis

Vincent John Corvari; Linda O. Narhi; Thomas M. Spitznagel; Nataliya Afonina; Shawn Cao; Patricia W. Cash; Irene Cecchini; Michael Rosario Defelippis; Patrick Garidel; Andrea Herre; Atanas V. Koulov; Tony Lubiniecki; Hanns-Christian Mahler; Paolo Mangiagalli; Douglas P. Nesta; Bernardo Perez-Ramirez; Alla Polozova; Mara Rossi; Roland Schmidt; Robert Simler; Satish K. Singh; Andrew Weiskopf; Klaus Wuchner

Measurement and characterization of subvisible particles (including proteinaceous and non-proteinaceous particulate matter) is an important aspect of the pharmaceutical development process for biotherapeutics. Health authorities have increased expectations for subvisible particle data beyond criteria specified in the pharmacopeia and covering a wider size range. In addition, subvisible particle data is being requested for samples exposed to various stress conditions and to support process/product changes. Consequently, subvisible particle analysis has expanded beyond routine testing of finished dosage forms using traditional compendial methods. Over the past decade, advances have been made in the detection and understanding of subvisible particle formation. This article presents industry case studies to illustrate the implementation of strategies for subvisible particle analysis as a characterization tool to assess the nature of the particulate matter and applications in drug product development, stability studies and post-marketing changes.

Collaboration


Dive into the Michael Rosario Defelippis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard D. DiMarchi

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shun Li

Eli Lilly and Company

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge