Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shun Li is active.

Publication


Featured researches published by Shun Li.


Journal of Immunology | 2014

IFN Regulatory Factor 10 Is a Negative Regulator of the IFN Responses in Fish

Shun Li; Long-Feng Lu; Hong Feng; Nan Wu; Dan-Dan Chen; Yi-Bing Zhang; Jian-Fang Gui; Pin Nie; Yong-An Zhang

IFN regulatory factor (IRF) 10 belongs to the IRF family and exists exclusively in birds and fish. Most IRFs have been identified as critical regulators in the IFN responses in both fish and mammals; however, the role of IRF10 is unclear. In this study, we identified IRF10 in zebrafish (Danio rerio) and found that it serves as a negative regulator to balance the innate antiviral immune responses. Zebrafish IRF10 (DrIRF10) was induced by intracellular polyinosinic:polycytidylic acid in ZF4 (zebrafish embryo fibroblast-like) cells. DrIRF10 inhibited the activation of zebrafish IFN1 (DrIFN1) and DrIFN3 promoters in epithelioma papulosum cyprinid cells in the presence or absence of polyinosinic:polycytidylic acid stimulation through direct interaction with the IFN promoters, and this inhibition was also shown to block IFN signaling. Overexpression of DrIRF10 was able to abolish the induction of DrIFN1 and DrIFN3 mediated by the retinoic acid–inducible gene I–like receptors. In addition, functional domain analysis of DrIRF10 showed that either the DNA binding domain or the IRF association domain is sufficient for its inhibitory activity for IFN signaling. Lastly, overexpression of DrIRF10 decreased the transcription level of several IFN-stimulated genes, resulting in the susceptibility of host cells to spring viremia of carp virus infection. Collectively, these data suggest that DrIRF10 inhibits the expression of DrIFN1 and DrIFN3 to avoid an excessive immune response, a unique regulation mechanism of the IFN responses in lower vertebrates.


Molecular Immunology | 2009

Expression regulation and functional characterization of a novel interferon inducible gene Gig2 and its promoter

Jun Jiang; Yi-Bing Zhang; Shun Li; Fei-Fei Yu; Fan Sun; Jian-Fang Gui

Grass carp hemorrhagic virus (GCHV)-induced gene 2 (Gig2) is a novel gene previously identified from UV-inactivated GCHV-treated Carassius auratus blastulae embryonic (CAB) cells, suggesting that it should play a pivotal role in the interferon (IFN) antiviral response. In this study, a polyclonal anti-Gig2 antiserum was generated and used to study the inductive expression pattern by Western blot analysis, showing no basal expression in normal CAB cells but a significant up-regulation upon UV-inactivated GCHV, polyinosinic:polycytidylic acid (Poly I:C) and recombinant IFN (rIFN). However, constitutive expression of Gig2 is observed in all tested tissues from grass carp (Ctenopharyngodon idellus), and Poly I:C injection increases the relative amount of Gig2 protein in skin, spleen, trunk kidney, gill, hindgut and thymus. Moreover, the genomic sequence covering the whole Gig2 ORF and the upstream promoter region were amplified by genomic walking. Significantly, the Gig2 promoter contains three IFN-stimulated response elements (ISREs), nine GAAA/TTTC motifs and five gamma-IFN activating sites (GAS), which are the characteristics of genes responsive to both type I IFN and type II IFN. Subsequently, the complete Gig2 promoter sequence was cloned into pGL3-Basic vector, and its activity was measured by luciferase assays in the transfected CAB cells. The Gig2 promoter-driven construct is highly induced in CAB cells after treatment with Poly I:C or rIFN, and the functional capability is dependent on IFN regulatory factor 7 (IRF7), because its activity can be stimulated by IRF7. Collectively, the data provide strong evidence that Gig2 is indeed a novel IFN inducible gene and its expression is likely dependent on IRF7 upon Poly I:C or IFN.


PLOS ONE | 2012

Identification of DreI as an Antiviral Factor Regulated by RLR Signaling Pathway

Shun Li; Fan Sun; Yi-Bing Zhang; Jian-Fang Gui; Qi-Ya Zhang

Background Retinoic acid-inducible gene I (RIG-I)–like receptors (RLRs) had been demonstrated to prime interferon (IFN) response against viral infection via the conserved RLR signaling in fish, and a novel fish-specific gene, the grass carp reovirus (GCRV)-induced gene 2 (Gig2), had been suggested to play important role in host antiviral response. Methodology/Principal Findings In this study, we cloned and characterized zebrafish Gig2 homolog (named Danio rerio Gig2-I, DreI), and revealed its antiviral role and expressional regulation signaling pathway. RT-PCR, Western blot and promoter activity assay indicate that DreI can be induced by poly I:C, spring viremia of carp virus (SVCV) and recombinant IFN (rIFN), showing that DreI is a typical ISG. Using the pivotal signaling molecules of RLR pathway, including RIG-I, MDA5 and IRF3 from crucian carp, it is found that DreI expression is regulated by RLR cascade and IRF3 plays an important role in this regulation. Furthermore, promoter mutation assay confirms that the IFN-stimulated regulatory elements (ISRE) in the 5′ flanking region of DreI is essential for its induction. Finally, overexpression of DreI leads to establish a strong antiviral state against SVCV and Rana grylio virus (RGV) infection in EPC (Epithelioma papulosum cyprinid) cells. Conclusions/Significance These data indicate that DreI is an antiviral protein, which is regulated by RLR signaling pathway.


Journal of Immunology | 2015

Distinctive Structural Hallmarks and Biological Activities of the Multiple Cathelicidin Antimicrobial Peptides in a Primitive Teleost Fish

Xu-Jie Zhang; Xiang-Yang Zhang; Nu Zhang; Xia Guo; Kai-Song Peng; Han Wu; Long-Feng Lu; Nan Wu; Dan-Dan Chen; Shun Li; Pin Nie; Yong-An Zhang

Cathelicidin antimicrobial peptides (CAMPs) represent a crucial component of the innate immune system in vertebrates. Although widely studied in mammals, little is known about the structure and function of fish CAMPs. Further to the previous findings, two more cathelicidin genes and multiple transcripts from rainbow trout were identified in the present study. Interestingly, we found that trout have evolved energy-saving forms of cathelicidins with the total deletion of the characteristic cathelin-like domain. Sequence analysis revealed that salmonid CAMPs have formed a special class of antimicrobial peptides in vertebrates with three distinctive hallmarks: the N terminus is intensified by positive charges, the central region consists of repetitive motifs based on RPGGGS, and the C terminus is lowly charged. Immunofluorescence localization of trout CAMPs demonstrated that these peptides expressed mainly at the mucosal layer of gut. Meanwhile, signals around sinusoids were also detected in head kidney. Moreover, the biological activities of trout CAMPs were proved to be mediated by the N terminus. Additionally, the repetitive motifs characteristically existing in Salmonidae increased the structural flexibilities of peptides and further increased the antibacterial and IL-8–stimulating activities. Unlike most α helical and cytotoxic mammalian CAMPs, trout CAMPs, mainly consisting of β-sheet and random coil, exhibited no cytotoxic activities. The distinctive structural features of trout CAMPs provide new insights into the understanding of the evolution of CAMPs in vertebrates. Moreover, the high bacterial membrane selectivity of trout CAMPs will help to design excellent peptide antibiotics.


Journal of Immunology | 2016

Spring Viremia of Carp Virus N Protein Suppresses Fish IFNφ1 Production by Targeting the Mitochondrial Antiviral Signaling Protein

Long-Feng Lu; Shun Li; Xiao-Bing Lu; Scott E. LaPatra; Nu Zhang; Xu-Jie Zhang; Dan-Dan Chen; Pin Nie; Yong-An Zhang

For a virus to replicate efficiently, it must try and inhibit host IFN expression because IFN is an important host defense at early stages after viral infection. For aquatic viruses, the mechanisms used to escape the hosts IFN system are still unclear. In this study, we show that the N protein of spring viremia of carp virus (SVCV) inhibits zebrafish IFNφ1 production by degrading the mitochondrial antiviral signaling protein (MAVS). First, the upregulation of IFNφ1 promoter activity stimulated by polyinosinic:polycytidylic acid, retinoic acid–inducible gene I (RIG-I) or MAVS was suppressed by the SVCV infection. However, the upregulation by the downstream factor of the RIG-I–like receptor signaling pathway, TANK-binding kinase 1, was not affected. Notably, at the protein level, MAVS decreased remarkably when cells were infected with SVCV. Second, consistent with the result of the SVCV infection, overexpression of the N protein of SVCV blocked the IFNφ1 transcription activated by MAVS and downregulated MAVS expression at the protein level but not at the mRNA level. Further analysis demonstrated that the N protein targeted MAVS for K48-linked ubiquitination, which promoted the degradation of MAVS. These data indicated that fish MAVS could be degraded by the N protein of SVCV through the ubiquitin-proteasome pathway. To our knowledge, this is the first article of a fish RIG-I–like receptor pathway interfered by an aquatic virus in an ubiquitin-proteasome manner, suggesting that immune evasion of a virus also exists in lower vertebrates.


Journal of Immunology | 2015

pVHL Negatively Regulates Antiviral Signaling by Targeting MAVS for Proteasomal Degradation

Juan Du; Dawei Zhang; Wei Zhang; Gang Ouyang; Jing Wang; Xing Liu; Shun Li; Wei Ji; Wei Liu; Wuhan Xiao

The von Hippel–Lindau (VHL) gene is a well-defined tumor suppressor linked to human heredity cancer syndromes. As a component of the VHL-elongin B/C E3 ligase complex, pVHL performs its tumor function by targeting proteins for proteasomal degradation. It is largely unknown whether pVHL functions in antiviral immunity. In this article, we identify that pVHL negatively regulates innate antiviral immunity, which acts mainly by inducing degradation of mitochondrial antiviral-signaling protein (MAVS, also known as Cardif, IPS-1, or VISA). Overexpression of pVHL abrogated the cellular response to viral infection, whereas knockdown of pVHL exerted the opposite effect. pVHL targeted the K420 residue of MAVS to catalyze the formation of K48-linked polyubiquitin chains, leading to proteasomal degradation of MAVS. After viral infection, Mavs levels remained low in wild type zebrafish embryos but became much higher in vhl-deficient (vhl−/−) zebrafish embryos. Higher MAVS levels correlated with a greatly exaggerated antiviral response. In this work, we demonstrate that pVHL exhibits a previously unknown role in innate antiviral immunity.


Journal of Virology | 2016

The P Protein of Spring Viremia of Carp Virus Negatively Regulates the Fish Interferon Response by Inhibiting the Kinase Activity of TANK-Binding Kinase 1

Shun Li; Long-Feng Lu; Zhao-Xi Wang; Xiao-Bing Lu; Dan-Dan Chen; Pin Nie; Yong-An Zhang

ABSTRACT Spring viremia of carp virus (SVCV) is an efficient pathogen causing high mortality in the common carp. Fish interferon (IFN) is a powerful cytokine enabling host cells to establish an antiviral response; therefore, the strategies that SVCV uses to avoid the cellular IFN response were investigated. Here, we report that the SVCV P protein is phosphorylated by cellular TANK-binding kinase 1 (TBK1), which decreases IFN regulatory factor 3 (IRF3) phosphorylation and suppresses IFN production. First, overexpression of P protein inhibited the IFN promoter activation induced by SVCV and the IFN activity activated by the mitochondrial antiviral signaling protein (MAVS) although TBK1 activity was not blocked by P protein. Second, P protein colocalized and interacted with TBK1. Dominant negative experiments suggested that the TBK1 N-terminal kinase domain interacted with P protein and was essential for P protein and IRF3 phosphorylation. Finally, P protein overexpression reduced the IRF3 phosphorylation activated by TBK1 and reduced host cellular ifn transcription. Collectively, our data demonstrated that the SVCV P protein is a decoy substrate for the host phosphokinase TBK1, preventing IFN production and facilitating SVCV replication. IMPORTANCE TBK1 is a pivotal phosphokinase that activates host IFN production to defend against viral infection; thus, it is a potential target for viruses to negatively regulate IFN response and facilitate viral evasion. We report that the SVCV P protein functions as a decoy substrate for cellular TBK1, leading to the reduction of IRF3 phosphorylation and suppression of IFN expression. These findings reveal a novel immune evasion mechanism of SVCV.


Fish & Shellfish Immunology | 2016

Identification and characterization of Bacillus subtilis from grass carp (Ctenopharynodon idellus) for use as probiotic additives in aquatic feed

Xia Guo; Dan-Dan Chen; Kai-Song Peng; Zheng-Wei Cui; Xu-Jie Zhang; Shun Li; Yong-An Zhang

Bacillus subtilis is widely used as probiotic species in aquaculture for water quality control, growth promoting, or immunity enhancing. The aim of this study is to find novel B. subtilis strains from fish as potential probiotics for aquaculture. Eleven B. subtilis isolates derived from the intestinal tract of grass carp were identified by gene sequencing and biochemical tests. These isolates were classified into 4 groups, and the representatives (GC-5, GC-6, GC-21 and GC-22) of each group were further investigated for antibiotic susceptibility, sporulation rate, biofilm formation, activity against pathogenic bacteria, resistance to stress conditions of intestinal tract (high percentage of bile and low pH) and high temperature, which are important for probiotics to be used as feed additives. Additionally, the adhesion properties of the 4 characterized strains were assessed using Caco-2 cell and gut mucus models. The results showed that the 4 strains differed in their capacities to adhere to intestinal epithelial cells and mucus. Furthermore, the strains GC-21 and GC-22 up-regulated the expression levels of IL-10 and TGF-β but down-regulated IL-1β, suggesting their potential anti-inflammatory abilities. Based on physiological properties of the 4 characterized B. subtilis strains, one or more strains may have potential to be used as probiotics in aquaculture.


Fish & Shellfish Immunology | 2015

Functions of the two zebrafish MAVS variants are opposite in the induction of IFN1 by targeting IRF7.

Long-Feng Lu; Shun Li; Xiao-Bing Lu; Yong-An Zhang

IFNs create the first line of host cells to defense viral infection, however, unrestricted expression of IFN can be hazardous to the host. IRF7 is the master regulator of type I IFN expression. To our knowledge, non research about the inhibition of IFN expression by targeting IRF7 has been reported in fish. In this study, we reported that the splicing variant of wildtype MAVS (MAVS_tv1), MAVS_tv2, negatively regulated IRF7-mediated IFN production. Firstly, in vivo, the transcriptional levels of MAVS_tv2 in trunk kidney and spleen from the zebrafish infected with SVCV were monitored. Then, in vitro, the protein expression pattern of MAVS_tv2 in zebrafish cell lines was detected using anti-MAVS_tv2 antibody. Furthermore, overexpression of MAVS_tv2 decreased the activation of IFN1 promoter that induced by IRF7 in a dose-dependent manner, whereas it had little effect on IRF3, a close relative of IRF7. In addition, such inhibition was also observed in IRF7-mediated epcIFN promoter and ISRE activities, but not in the activation of the promoters of type II IFNs and NF-ĸB, due to IRF7 not regulating their expression. Lastly, overexpression of MAVS_tv2 decreased the transcriptional levels of several IFN-stimulated genes activated by IRF7. These findings suggest that MAVS_tv2 is a negative regulator of IFN1 by targeting IRF7.


PLOS ONE | 2013

Identification of a Novel Gig2 Gene Family Specific to Non-Amniote Vertebrates

Yi-Bing Zhang; Ting-Kai Liu; Jun Jiang; Jun Shi; Ying Liu; Shun Li; Jian-Fang Gui

Gig2 (grass carp reovirus (GCRV)-induced gene 2) is first identified as a novel fish interferon (IFN)-stimulated gene (ISG). Overexpression of a zebrafish Gig2 gene can protect cultured fish cells from virus infection. In the present study, we identify a novel gene family that is comprised of genes homologous to the previously characterized Gig2. EST/GSS search and in silico cloning identify 190 Gig2 homologous genes in 51 vertebrate species ranged from lampreys to amphibians. Further large-scale search of vertebrate and invertebrate genome databases indicate that Gig2 gene family is specific to non-amniotes including lampreys, sharks/rays, ray-finned fishes and amphibians. Phylogenetic analysis and synteny analysis reveal lineage-specific expansion of Gig2 gene family and also provide valuable evidence for the fish-specific genome duplication (FSGD) hypothesis. Although Gig2 family proteins exhibit no significant sequence similarity to any known proteins, a typical Gig2 protein appears to consist of two conserved parts: an N-terminus that bears very low homology to the catalytic domains of poly(ADP-ribose) polymerases (PARPs), and a novel C-terminal domain that is unique to this gene family. Expression profiling of zebrafish Gig2 family genes shows that some duplicate pairs have diverged in function via acquisition of novel spatial and/or temporal expression under stresses. The specificity of this gene family to non-amniotes might contribute to a large extent to distinct physiology in non-amniote vertebrates.

Collaboration


Dive into the Shun Li's collaboration.

Top Co-Authors

Avatar

Yong-An Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Long-Feng Lu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Dan-Dan Chen

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Pin Nie

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xia Guo

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiao-Bing Lu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Nan Wu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jian-Fang Gui

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiang-Yang Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xu-Jie Zhang

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge