Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael S. Watson is active.

Publication


Featured researches published by Michael S. Watson.


American Journal of Human Genetics | 2010

Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies.

David T. Miller; Adam Mp; Swaroop Aradhya; Leslie G. Biesecker; Arthur R. Brothman; Nigel P. Carter; Deanna M. Church; John A. Crolla; Evan E. Eichler; Charles J. Epstein; W. Andrew Faucett; Lars Feuk; Jan M. Friedman; Ada Hamosh; Laird G. Jackson; Erin B. Kaminsky; Klaas Kok; Ian D. Krantz; Robert M. Kuhn; Charles Lee; James Ostell; Carla Rosenberg; Stephen W. Scherer; Nancy B. Spinner; Dimitri J. Stavropoulos; James Tepperberg; Erik C. Thorland; Joris Vermeesch; Darrel Waggoner; Michael S. Watson

Chromosomal microarray (CMA) is increasingly utilized for genetic testing of individuals with unexplained developmental delay/intellectual disability (DD/ID), autism spectrum disorders (ASD), or multiple congenital anomalies (MCA). Performing CMA and G-banded karyotyping on every patient substantially increases the total cost of genetic testing. The International Standard Cytogenomic Array (ISCA) Consortium held two international workshops and conducted a literature review of 33 studies, including 21,698 patients tested by CMA. We provide an evidence-based summary of clinical cytogenetic testing comparing CMA to G-banded karyotyping with respect to technical advantages and limitations, diagnostic yield for various types of chromosomal aberrations, and issues that affect test interpretation. CMA offers a much higher diagnostic yield (15%-20%) for genetic testing of individuals with unexplained DD/ID, ASD, or MCA than a G-banded karyotype ( approximately 3%, excluding Down syndrome and other recognizable chromosomal syndromes), primarily because of its higher sensitivity for submicroscopic deletions and duplications. Truly balanced rearrangements and low-level mosaicism are generally not detectable by arrays, but these are relatively infrequent causes of abnormal phenotypes in this population (<1%). Available evidence strongly supports the use of CMA in place of G-banded karyotyping as the first-tier cytogenetic diagnostic test for patients with DD/ID, ASD, or MCA. G-banded karyotype analysis should be reserved for patients with obvious chromosomal syndromes (e.g., Down syndrome), a family history of chromosomal rearrangement, or a history of multiple miscarriages.


Genetics in Medicine | 2013

ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing

Robert C. Green; Jonathan S. Berg; Wayne W. Grody; Sarah S. Kalia; Bruce R. Korf; Christa Lese Martin; Amy L. McGuire; Robert L. Nussbaum; Kelly E. Ormond; Heidi L. Rehm; Michael S. Watson; Marc S. Williams; Leslie G. Biesecker

In clinical exome and genome sequencing, there is a potential for the recognition and reporting of incidental or secondary findings unrelated to the indication for ordering the sequencing but of medical value for patient care. The American College of Medical Genetics and Genomics (ACMG) recently published a policy statement on clinical sequencing that emphasized the importance of alerting the patient to the possibility of such results in pretest patient discussions, clinical testing, and reporting of results. The ACMG appointed a Working Group on Incidental Findings in Clinical Exome and Genome Sequencing to make recommendations about responsible management of incidental findings when patients undergo exome or genome sequencing. This Working Group conducted a year-long consensus process, including an open forum at the 2012 Annual Meeting and review by outside experts, and produced recommendations that have been approved by the ACMG Board. Specific and detailed recommendations, and the background and rationale for these recommendations, are described herein. The ACMG recommends that laboratories performing clinical sequencing seek and report mutations of the specified classes or types in the genes listed here. This evaluation and reporting should be performed for all clinical germline (constitutional) exome and genome sequencing, including the “normal” of tumor-normal subtractive analyses in all subjects, irrespective of age but excluding fetal samples. We recognize that there are insufficient data on penetrance and clinical utility to fully support these recommendations, and we encourage the creation of an ongoing process for updating these recommendations at least annually as further data are collected.Genet Med 2013:15(7):565–574


Pediatrics | 2006

Newborn Screening: Toward a Uniform Screening Panel and System—Executive Summary

Michael S. Watson; Marie Y. Mann; Michele A. Lloyd-Puryear; Piero Rinaldo; R. Rodney Howell

The Maternal and Child Health Bureau commissioned the American College of Medical Genetics to outline a process of standardization of outcomes and guidelines for state newborn screening programs and to define responsibilities for collecting and evaluating outcome data, including a recommended uniform panel of conditions to include in state newborn screening programs. The expert panel identified 29 conditions for which screening should be mandated. An additional 25 conditions were identified because they are part of the differential diagnosis of a condition in the core panel, they are clinically significant and revealed with screening technology but lack an efficacious treatment, or they represent incidental findings for which there is potential clinical significance. The process of identification is described, and recommendations are provided.


Genetics in Medicine | 2001

Laboratory standards and guidelines for population- based cystic fibrosis carrier screening

Wayne W. Grody; Garry R. Cutting; Katherine W. Klinger; Carolyn Sue Richards; Michael S. Watson; Robert J. Desnick

In 1997, the National Institutes of Health convened a Consensus Development Conference on Cystic Fibrosis (CF).1 The Consensus Conference recommended that genetic screening for CF mutations should be offered to identify carriers among adults with a positive family history of CF, partners of individuals with CF, couples currently planning a pregnancy, and couples seeking prenatal care. A second NIH-sponsored conference that focused on the implementation of the Consensus Conference recommendations was held in 1998.2 Shortly thereafter, the American College of Medical Genetics (ACMG) and the American College of Obstetricians and Gynecologists (ACOG), in conjunction with the National Human Genome Research Institute, formed a Steering Committee to coordinate the implementation of population-based CF carrier screening and to develop “Clinical and Laboratory Provider Guidelines” for (1) provider education; (2) laboratory testing, interpretation, and genetic counseling; and (3) patient education and informed consent. The ACMG charged the Accreditation of Genetic Services Committee, chaired by Dr. Robert Desnick, to establish a Subcommittee on Cystic Fibrosis Carrier Screening (henceforth the “Committee”) to develop recommendations and guidelines for optimal laboratory testing, interpretation, and counseling. The Subcommittee, cochaired by Drs. Wayne Grody and Garry Cutting, met twice yearly since October 1998. The issues considered by the Committee included (1) the target population to be screened (universal vs. limited to certain high-risk ethnic groups); (2) the screening model to be used (couple-based vs. sequential); (3) criteria for and selection of the standard mutation testing panel; (4) potential value and use of an extended testing panel with additional mutations; (5) whether to test for mutations and variants associated with mild or nonclassical phenotypes (such as congenital bilateral absence of the vas deferens); (6) test interpretation, reporting, and genetic counseling; and (7) laboratory quality assurance. The recommendations detailed here have been incorporated into a joint ACMG/ACOG/NIH Steering Committee document entitled “Preconceptual and Prenatal Carrier Screening for Cystic Fibrosis” which will be widely distributed. This document also will include guidelines for providers, patient education, and informed consent. Patient education materials will include two pamphlets, entitled “Cystic Fibrosis Carrier Testing. . . The Decision is Yours” and “Cystic Fibrosis Testing: What Happens if Both My Partner and I are Carriers?” It is important to note that these guidelines were prepared for population CF carrier screening and that different testing and counseling strategies would be employed for the identification of the mutation(s) in patients diagnosed with CF or in relatives of CF patients. Such diagnostic and prenatal mutation analyses should be referred to a genetics center for appropriate testing and counseling.


Genetics in Medicine | 2004

Cystic fibrosis population carrier screening: 2004 revision of American College of Medical Genetics mutation panel

Michael S. Watson; Garry R. Cutting; Robert J. Desnick; Deborah A. Driscoll; Katherine W. Klinger; Michael T. Mennuti; Glenn E. Palomaki; Bradley W. Popovich; Victoria M. Pratt; Elizabeth M. Rohlfs; Charles M. Strom; C. Sue Richards; David R. Witt; Wayne W. Grody

Cystic fibrosis population carrier screening: 2004 revision of American College of Medical Genetics mutation panel


The New England Journal of Medicine | 2015

ClinGen — The Clinical Genome Resource

Heidi L. Rehm; Jonathan S. Berg; Lisa D. Brooks; Carlos Bustamante; James P. Evans; Melissa J. Landrum; David H. Ledbetter; Donna Maglott; Christa Lese Martin; Robert L. Nussbaum; Sharon E. Plon; Erin M. Ramos; Stephen T. Sherry; Michael S. Watson

On autopsy, a patient is found to have hypertrophic cardiomyopathy. The patient’s family pursues genetic testing that shows a “likely pathogenic” variant for the condition on the basis of a study in an original research publication. Given the dominant inheritance of the condition and the risk of sudden cardiac death, other family members are tested for the genetic variant to determine their risk. Several family members test negative and are told that they are not at risk for hypertrophic cardiomyopathy and sudden cardiac death, and those who test positive are told that they need to be regularly monitored for cardiomyopathy on echocardiography. Five years later, during a routine clinic visit of one of the genotype-positive family members, the cardiologist queries a database for current knowledge on the genetic variant and discovers that the variant is now interpreted as “likely benign” by another laboratory that uses more recently derived population-frequency data. A newly available testing panel for additional genes that are implicated in hypertrophic cardiomyopathy is initiated on an affected family member, and a different variant is found that is determined to be pathogenic. Family members are retested, and one member who previously tested negative is now found to be positive for this new variant. An immediate clinical workup detects evidence of cardiomyopathy, and an intracardiac defibrillator is implanted to reduce the risk of sudden cardiac death.


Genetics in Medicine | 2006

Pompe disease diagnosis and management guideline

Priya S. Kishnani; Robert D. Steiner; Deeksha Bali; Kenneth I. Berger; Barry J. Byrne; Laura E. Case; John F. Crowley; Steven Downs; R. Rodney Howell; Richard M. Kravitz; Joanne Mackey; Deborah Marsden; Anna Maria Martins; David S. Millington; Marc Nicolino; Gwen O’Grady; Marc C. Patterson; David M. Rapoport; Alfred E. Slonim; Carolyn T. Spencer; Cynthia J. Tifft; Michael S. Watson

Disclaimer: ACMG standards and guidelines are designed primarily as an educational resource for physicians and other health care providers to help them provide quality medical genetic services. Adherence to these standards and guidelines does not necessarily ensure a successful medical outcome. These standards and guidelines should not be considered inclusive of all proper procedures and tests or exclusive of other procedures and tests that are reasonably directed to obtaining the same results. In determining the propriety of any specific procedure or test, the geneticist should apply his or her own professional judgment to the specific clinical circumstances presented by the individual patient or specimen. It may be prudent, however, to document in the patient’s record the rationale for any significant deviation from these standards and guidelines.


JAMA | 2014

Newborn Screening for Severe Combined Immunodeficiency in 11 Screening Programs in the United States

Antonia Kwan; Roshini S. Abraham; Robert Currier; Amy Brower; Karen Andruszewski; Jordan K. Abbott; Mei W. Baker; Mark Ballow; Louis Bartoshesky; Francisco A. Bonilla; Charles D. Brokopp; Edward G. Brooks; Michele Caggana; Jocelyn Celestin; Joseph A. Church; Anne Marie Comeau; James A. Connelly; Morton J. Cowan; Charlotte Cunningham-Rundles; Trivikram Dasu; Nina Dave; Maria Teresa De La Morena; Ulrich A. Duffner; Chin To Fong; Lisa R. Forbes; Debra Freedenberg; Erwin W. Gelfand; Jaime E. Hale; I. Celine Hanson; Beverly N. Hay

IMPORTANCE Newborn screening for severe combined immunodeficiency (SCID) using assays to detect T-cell receptor excision circles (TRECs) began in Wisconsin in 2008, and SCID was added to the national recommended uniform panel for newborn screened disorders in 2010. Currently 23 states, the District of Columbia, and the Navajo Nation conduct population-wide newborn screening for SCID. The incidence of SCID is estimated at 1 in 100,000 births. OBJECTIVES To present data from a spectrum of SCID newborn screening programs, establish population-based incidence for SCID and other conditions with T-cell lymphopenia, and document early institution of effective treatments. DESIGN Epidemiological and retrospective observational study. SETTING Representatives in states conducting SCID newborn screening were invited to submit their SCID screening algorithms, test performance data, and deidentified clinical and laboratory information regarding infants screened and cases with nonnormal results. Infants born from the start of each participating program from January 2008 through the most recent evaluable date prior to July 2013 were included. Representatives from 10 states plus the Navajo Area Indian Health Service contributed data from 3,030,083 newborns screened with a TREC test. MAIN OUTCOMES AND MEASURES Infants with SCID and other diagnoses of T-cell lymphopenia were classified. Incidence and, where possible, etiologies were determined. Interventions and survival were tracked. RESULTS Screening detected 52 cases of typical SCID, leaky SCID, and Omenn syndrome, affecting 1 in 58,000 infants (95% CI, 1/46,000-1/80,000). Survival of SCID-affected infants through their diagnosis and immune reconstitution was 87% (45/52), 92% (45/49) for infants who received transplantation, enzyme replacement, and/or gene therapy. Additional interventions for SCID and non-SCID T-cell lymphopenia included immunoglobulin infusions, preventive antibiotics, and avoidance of live vaccines. Variations in definitions and follow-up practices influenced the rates of detection of non-SCID T-cell lymphopenia. CONCLUSIONS AND RELEVANCE Newborn screening in 11 programs in the United States identified SCID in 1 in 58,000 infants, with high survival. The usefulness of detection of non-SCID T-cell lymphopenias by the same screening remains to be determined.


Genetics in Medicine | 2017

Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2.0): a policy statement of the American College of Medical Genetics and Genomics

Sarah S. Kalia; Kathy Adelman; Sherri J. Bale; Wendy K. Chung; Christine M. Eng; James P. Evans; Gail E. Herman; Sophia B. Hufnagel; Teri E. Klein; Bruce R. Korf; Kent D. McKelvey; Kelly E. Ormond; C. Sue Richards; Christopher N. Vlangos; Michael S. Watson; Christa Lese Martin; David T. Miller

Disclaimer: These recommendations are designed primarily as an educational resource for medical geneticists and other healthcare providers to help them provide quality medical services. Adherence to these recommendations is completely voluntary and does not necessarily assure a successful medical outcome. These recommendations should not be considered inclusive of all proper procedures and tests or exclusive of other procedures and tests that are reasonably directed toward obtaining the same results. In determining the propriety of any specific procedure or test, the clinician should apply his or her own professional judgment to the specific clinical circumstances presented by the individual patient or specimen. Clinicians are encouraged to document the reasons for the use of a particular procedure or test, whether or not it is in conformance with this statement. Clinicians also are advised to take notice of the date this statement was adopted and to consider other medical and scientific information that becomes available after that date. It also would be prudent to consider whether intellectual property interests may restrict the performance of certain tests and other procedures.To promote standardized reporting of actionable information from clinical genomic sequencing, in 2013, the American College of Medical Genetics and Genomics (ACMG) published a minimum list of genes to be reported as incidental or secondary findings. The goal was to identify and manage risks for selected highly penetrant genetic disorders through established interventions aimed at preventing or significantly reducing morbidity and mortality. The ACMG subsequently established the Secondary Findings Maintenance Working Group to develop a process for curating and updating the list over time. We describe here the new process for accepting and evaluating nominations for updates to the secondary findings list. We also report outcomes from six nominations received in the initial 15 months after the process was implemented. Applying the new process while upholding the core principles of the original policy statement resulted in the addition of four genes and removal of one gene; one gene did not meet criteria for inclusion. The updated secondary findings minimum list includes 59 medically actionable genes recommended for return in clinical genomic sequencing. We discuss future areas of focus, encourage continued input from the medical community, and call for research on the impact of returning genomic secondary findings.Genet Med 19 2, 249–255.


Genetics in Medicine | 2008

Pharmacogenetic testing of CYP2C9 and VKORC1 alleles for warfarin

David A. Flockhart; Dennis J. O'Kane; Marc S. Williams; Michael S. Watson; Brian F. Gage; Roy Gandolfi; Richard King; Elaine Lyon; Robert L. Nussbaum; Kevin A. Schulman; David L. Veenstra

Disclaimer: American College of Medical Genetics statements and guidelines are designed primarily as an educational resource for medical geneticists and other health care professionals to help them provide quality medical genetic services. Adherence to these standards and guidelines does not necessarily ensure a successful medical outcome. These statements and guidelines should not be considered inclusive of all proper procedures and tests or exclusive of other procedures and tests that are reasonably directed to obtaining the same results. In determining the propriety of any specific procedure or test, the health care professional should apply his or her own professional judgment to the specific clinical circumstances presented by the individual patient or specimen. It may be prudent, however, to document in the patients record the rationale for any significant deviation from these standards and guidelines.Warfarin (Coumadin) is a potent drug that when used judiciously and monitored closely, leads to substantial reductions in morbidity and mortality from thromboembolic events. However, even with careful monitoring, initiation of warfarin dosing is associated with highly variable responses between individuals and challenges achieving and maintaining levels within the narrow therapeutic range that can lead to adverse drug events. Variants of two genes, CYP2C9 and VKORC1, account for 30–50% of the variability in dosing of warfarin; thus, many believe that testing of these genes will aid in warfarin dosing recommendations. Evidence about this test is evolving rapidly, as is its translation into clinical practice. In an effort to address this situation, a multidisciplinary expert group was organized in November 2006 to evaluate the role of CYP2C9 and VKORC1 testing in altering warfarin-related therapeutic goals and reduction of adverse drug events. A recently completed Rapid-ACCE (Analytical, Clinical Validity, Clinical Utility, and Ethical, Legal, and Social Implications) Review, commissioned to inform this work group, was the foundation for this analysis. From this effort, specific recommendations for the appropriate use of CYP2C9 and VKORC1 testing were developed and are presented here. The group determined that the analytical validity of these tests has been met, and there is strong evidence to support association between these genetic variants and therapeutic dose of warfarin. However, there is insufficient evidence, at this time, to recommend for or against routine CYP2C9 and VKORC1 testing in warfarin-naive patients. Prospective clinical trials are needed that provide direct evidence of the benefits, disadvantages, and costs associated with this testing in the setting of initial warfarin dosing. Although the routine use of warfarin genotyping is not endorsed by this work group at this time, in certain situations, CYP2C9 and VKORC1 testing may be useful, and warranted, in determining the cause of unusual therapeutic responses to warfarin therapy.

Collaboration


Dive into the Michael S. Watson's collaboration.

Top Co-Authors

Avatar

Michele A. Lloyd-Puryear

United States Department of Health and Human Services

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wayne W. Grody

University of California

View shared research outputs
Top Co-Authors

Avatar

Bruce R. Korf

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jonathan S. Berg

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Judith Benkendorf

American College of Medical Genetics

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge