Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Sawchuk is active.

Publication


Featured researches published by Michael Sawchuk.


Neuroscience | 2007

Expression and distribution of all dopamine receptor subtypes (D1 – D5) in the mouse lumbar spinal cord: A real-time PCR and non-autoradiographic in situ hybridization study

Hong Zhu; Stefan Clemens; Michael Sawchuk; Shawn Hochman

Abstract Dopamine is a catecholaminergic neuromodulatory transmitter that acts through five molecularly-distinct G protein–coupled receptor subtypes (D1–D5). In the mammalian spinal cord, dopaminergic axon collaterals arise predominantly from the A11 region of the dorsoposterior hypothalamus and project diffusely throughout the spinal neuraxis. Dopaminergic modulatory actions are implicated in sensory, motor and autonomic functions in the spinal cord but the expression properties of the different dopamine receptors in the spinal cord remain incomplete. Here we determined the presence and the regional distribution of all dopamine receptor subtypes in mouse spinal cord cells by means of quantitative real time polymerase chain reaction (PCR) and digoxigenin-label in situ hybridization. Real-time PCR demonstrated that all dopamine receptors are expressed in the spinal cord with strongly dominant D2 receptor expression, including in motoneurons and in the sensory encoding superficial dorsal horn (SDH). Laser capture microdissection (LCM) corroborated the predominance of D2 receptor expression in SDH and motoneurons. In situ hybridization of lumbar cord revealed that expression for all dopamine receptors was largely in the gray matter, including motoneurons, and distributed diffusely in labeled cell subpopulations in most or all laminae. The highest incidence of cellular labeling was observed for D2 and D5 receptors, while the incidence of D1 and D3 receptor expression was least. We conclude that the expression and extensive postsynaptic distribution of all known dopamine receptors in spinal cord correspond well with the broad descending dopaminergic projection territory supporting a widespread dopaminergic control over spinal neuronal systems. The dominant expression of D2 receptors suggests a leading role for these receptors in dopaminergic actions on postsynaptic spinal neurons.


Gastroenterology | 2008

Characterization of Fetal and Postnatal Enteric Neuronal Cell Lines With Improvement in Intestinal Neural Function

Mallappa Anitha; Irene Joseph; Xiaokun Ding; Enrique Torre; Michael Sawchuk; Simon M. Mwangi; Shawn Hochman; Shanthi V. Sitaraman; Frank A. Anania; Shanthi Srinivasan

BACKGROUND & AIMS The isolation and culture of primary enteric neurons is a difficult process and yields a small number of neurons. We developed fetal and postnatal enteric neuronal cell lines using H-2K(b)-tsA58 transgenic mice (immortomice) that have a temperature-sensitive mutation of the SV40 large tumor antigen gene under the control of an interferon gamma-inducible H-2K(b) promoter element. METHODS Enteric neuronal precursors were isolated from the intestines of E13-mouse fetuses and second day postnatal mice using magnetic immunoselection with a p75NTR antibody. The cells were maintained at the permissive temperature, 33 degrees C, and interferon-gamma for 24 or 48 hours, and then transferred to 39 degrees C in the presence of glial cell line-derived neurotrophic factor for 7 days for further differentiation. Neuronal markers were assessed by reverse-transcription polymerase chain reaction, Western blot, and immunocytochemistry. Neuronal function was assessed by transplanting these cells into the colons of Piebald or nNOS(-/-) mice. RESULTS Expression analysis of cells showed the presence of neuronal markers peripherin, PGP9.5, HuD, tau, synaptic marker synaptophysin, characteristic receptors of enteric neurons, Ret, and 5-hydroxytryptamine-receptor subtypes at 33 degrees C and 39 degrees C. Nestin, S-100beta, and alpha-smooth muscle actin were expressed minimally at 39 degrees C. Glial cell line-derived neurotrophic factor resulted in increased phosphorylation of Akt in these cells, similar to primary enteric neurons. Transplantation of cells into the piebald or nNOS(-/-) mice colon improved colonic motility. CONCLUSIONS We have developed novel enteric neuronal cell lines that have neuronal characteristics similar to primary enteric neurons. These cells can help us in understanding newer therapeutic options for Hirschsprungs disease.


Neuroscience | 2005

Reversal of the circadian expression of tyrosine-hydroxylase but not nitric oxide synthase levels in the spinal cord of dopamine D3 receptor knockout mice

Stefan Clemens; Michael Sawchuk; Shawn Hochman

Circadian rhythms have been described for numerous transmitter synthesizing enzymes in the brain but rarely in spinal cord. We measured spinal tyrosine-hydroxylase (TH) and nitric oxide synthase (NOS) levels in the thoracic intermediolateral nucleus, the location of sympathetic preganglionic neurons, in male wild type (WT) and dopamine D(3) receptor knockout mice (D(3)KO). TH and NOS levels both displayed circadian patterns in WT and D(3)KO animals with overall reduced TH and increased NOS expression in the D(3)KO mice. The circadian pattern of NOS expression was similar in WT and D(3)KO mice. In contrast, TH expression was inverted in D(3)KO mice, with TH levels consistently lower than in WT throughout the day, but strongly increased temporarily 1 h prior to daylight. TH is the rate-limiting enzyme for the production of dopamine. Spinal dopamine dysfunction is implicated in a sleep disorder called restless legs syndrome (RLS). RLS follows a circadian rhythm and is relieved clinically by dopamine D(3) receptor agonists. Our observations of an altered circadian pattern in spinal dopamine synthesis in D(3)KO animals may provide insight into putative dopaminergic mechanisms contributing to RLS.


Frontiers in Neural Circuits | 2014

Anatomical and functional evidence for trace amines as unique modulators of locomotor function in the mammalian spinal cord

Elizabeth A. Gozal; Brannan O'Neill; Michael Sawchuk; Hong Zhu; Mallika Halder; Ching-Chieh Chou; Shawn Hochman

The trace amines (TAs), tryptamine, tyramine, and β-phenylethylamine, are synthesized from precursor amino acids via aromatic-L-amino acid decarboxylase (AADC). We explored their role in the neuromodulation of neonatal rat spinal cord motor circuits. We first showed that the spinal cord contains the substrates for TA biosynthesis (AADC) and for receptor-mediated actions via trace amine-associated receptors (TAARs) 1 and 4. We next examined the actions of the TAs on motor activity using the in vitro isolated neonatal rat spinal cord. Tyramine and tryptamine most consistently increased motor activity with prominent direct actions on motoneurons. In the presence of N-methyl-D-aspartate, all applied TAs supported expression of a locomotor-like activity (LLA) that was indistinguishable from that ordinarily observed with serotonin, suggesting that the TAs act on common central pattern generating neurons. The TAs also generated distinctive complex rhythms characterized by episodic bouts of LLA. TA actions on locomotor circuits did not require interaction with descending monoaminergic projections since evoked LLA was maintained following block of all Na+-dependent monoamine transporters or the vesicular monoamine transporter. Instead, TA (tryptamine and tyramine) actions depended on intracellular uptake via pentamidine-sensitive Na+-independent membrane transporters. Requirement for intracellular transport is consistent with the TAs having much slower LLA onset than serotonin and for activation of intracellular TAARs. To test for endogenous actions following biosynthesis, we increased intracellular amino acid levels with cycloheximide. LLA emerged and included distinctive TA-like episodic bouts. In summary, we provided anatomical and functional evidence of the TAs as an intrinsic spinal monoaminergic modulatory system capable of promoting recruitment of locomotor circuits independent of the descending monoamines. These actions support their known sympathomimetic function.


Neuroscience | 2009

Phenotypic diversity and expression of GABAergic inhibitory interneurons during postnatal development in lumbar spinal cord of glutamic acid decarboxylase 67–green fluorescent protein mice

Kimberly J. Dougherty; Michael Sawchuk; Shawn Hochman

The synthesis enzyme glutamic acid decarboxylase (GAD65 or GAD67) identifies neurons as GABAergic. Recent studies have characterized the physiological properties of spinal cord GABAergic interneurons using lines of GAD67-green fluorescent protein (GFP) transgenic mice. A more complete characterization of their phenotype is required to better understand the role of this population of inhibitory neurons in spinal cord function. Here, we characterize the distribution of lumbar spinal cord GAD67-GFP neurons at postnatal days (P) 0, 7, and 14, and adult based on their co-expression with GABA and determine the molecular phenotype of GAD67-GFP neurons at P14 based on the expression of various neuropeptides, calcium binding proteins, and other markers. At all ages >67% of GFP(+) neurons were also GABA(+). With increasing age; (i) GFP(+) and GABA(+) cell numbers declined, (ii) ventral horn GFP(+) and GABA(+) neurons vanished, and (iii) somatic labeling was reduced while terminal labeling increased. At P14, vasoactive intestinal peptide and bombesin were expressed in approximately 63% and approximately 35% of GFP(+) cells, respectively. Somatostatin was found in a small number of neurons, whereas calcitonin gene-related peptide never co-localized with GFP. Moderate co-expression was found for all the Ca(2+) binding proteins examined. Notably, most laminae I-II parvalbumin(+) neurons were also GFP(+). Neurogranin, a protein kinase C substrate, was found in approximately 1/2 of GFP(+) cells. Lastly, while only 7% of GFP(+) cells contain nitric oxide synthase (NOS), these cells represent a large fraction of all NOS(+) cells. We conclude that GAD67-GFP neurons represent the majority of spinal GABAergic neurons and that mouse dorsal horn GAD67-GFP(+) neurons comprise a phenotypically diverse population.


Journal of Comparative Physiology A-neuroethology Sensory Neural and Behavioral Physiology | 2008

Unaltered D1, D2, D4, and D5 dopamine receptor mRNA expression and distribution in the spinal cord of the D3 receptor knockout mouse

Hong Zhu; Stefan Clemens; Michael Sawchuk; Shawn Hochman

Dopamine (DA) acts through five receptor subtypes (D1–D5). We compared expression levels and distribution patterns of all DA mRNA receptors in the spinal cord of wild-type (WT) and loss of function D3 receptor knockout (D3KO) animals. D3 mRNA expression was increased in D3KO, but no D3 receptor protein was associated with cell membranes, supporting the previously reported lack of function. In contrast, mRNA expression levels and distribution patterns of D1, D2, D4, and D5 receptors were similar between WT and D3KO animals. We conclude that D3KO spinal neurons do not compensate for the loss of function of the D3 receptor with changes in the other DA receptor subtypes. This supports use of D3KO animals as a model to provide insight into D3 receptor dysfunction in the spinal cord.


PLOS ONE | 2012

Monoaminergic modulation of spinal viscero-sympathetic function in the neonatal mouse thoracic spinal cord.

Amanda Zimmerman; Michael Sawchuk; Shawn Hochman

Descending serotonergic, noradrenergic, and dopaminergic systems project diffusely to sensory, motor and autonomic spinal cord regions. Using neonatal mice, this study examined monoaminergic modulation of visceral sensory input and sympathetic preganglionic output. Whole-cell recordings from sympathetic preganglionic neurons (SPNs) in spinal cord slice demonstrated that serotonin, noradrenaline, and dopamine modulated SPN excitability. Serotonin depolarized all, while noradrenaline and dopamine depolarized most SPNs. Serotonin and noradrenaline also increased SPN current-evoked firing frequency, while both increases and decreases were seen with dopamine. In an in vitro thoracolumbar spinal cord/sympathetic chain preparation, stimulation of splanchnic nerve visceral afferents evoked reflexes and subthreshold population synaptic potentials in thoracic ventral roots that were dose-dependently depressed by the monoamines. Visceral afferent stimulation also evoked bicuculline-sensitive dorsal root potentials thought to reflect presynaptic inhibition via primary afferent depolarization. These dorsal root potentials were likewise dose-dependently depressed by the monoamines. Concomitant monoaminergic depression of population afferent synaptic transmission recorded as dorsal horn field potentials was also seen. Collectively, serotonin, norepinephrine and dopamine were shown to exert broad and comparable modulatory regulation of viscero-sympathetic function. The general facilitation of SPN efferent excitability with simultaneous depression of visceral afferent-evoked motor output suggests that descending monoaminergic systems reconfigure spinal cord autonomic function away from visceral sensory influence. Coincident monoaminergic reductions in dorsal horn responses support a multifaceted modulatory shift in the encoding of spinal visceral afferent activity. Similar monoamine-induced changes have been observed for somatic sensorimotor function, suggesting an integrative modulatory response on spinal autonomic and somatic function.


Journal of Neurophysiology | 2005

Properties of mouse spinal lamina I GABAergic interneurons.

Kimberly J. Dougherty; Michael Sawchuk; Shawn Hochman


Journal of Neurophysiology | 2005

Serotonin 5-HT2 Receptors Induce a Long-Lasting Facilitation of Spinal Reflexes Independent of Ionotropic Receptor Activity

Barbara L. Shay; Michael Sawchuk; David W. Machacek; Shawn Hochman


The FASEB Journal | 2012

Isolating a role for deep breathing in reducing activation of stress-related limbic circuits

Donald J. Noble; Michael Sawchuk; Brannan O'Neill; Shawn Hochman

Collaboration


Dive into the Michael Sawchuk's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefan Clemens

East Carolina University

View shared research outputs
Top Co-Authors

Avatar

Amanda Zimmerman

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge