Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Schleicher is active.

Publication


Featured researches published by Michael Schleicher.


Nature | 2005

The genome of the social amoeba Dictyostelium discoideum

Ludwig Eichinger; J. A. Pachebat; G. Glöckner; Marie-Adele Rajandream; Richard Sucgang; Matthew Berriman; J. Song; Rolf Olsen; Karol Szafranski; Qikai Xu; Budi Tunggal; Sarah K. Kummerfeld; B. A. Konfortov; Francisco Rivero; Alan Thomas Bankier; R. Lehmann; N. Hamlin; Robert Davies; Pascale Gaudet; Petra Fey; Karen E Pilcher; Guokai Chen; David L. Saunders; Erica Sodergren; Paul Davis; Arnaud Kerhornou; X. Nie; Neil Hall; Christophe Anjard; Lisa Hemphill

The social amoebae are exceptional in their ability to alternate between unicellular and multicellular forms. Here we describe the genome of the best-studied member of this group, Dictyostelium discoideum. The gene-dense chromosomes of this organism encode approximately 12,500 predicted proteins, a high proportion of which have long, repetitive amino acid tracts. There are many genes for polyketide synthases and ABC transporters, suggesting an extensive secondary metabolism for producing and exporting small molecules. The genome is rich in complex repeats, one class of which is clustered and may serve as centromeres. Partial copies of the extrachromosomal ribosomal DNA (rDNA) element are found at the ends of each chromosome, suggesting a novel telomere structure and the use of a common mechanism to maintain both the rDNA and chromosomal termini. A proteome-based phylogeny shows that the amoebozoa diverged from the animal–fungal lineage after the plant–animal split, but Dictyostelium seems to have retained more of the diversity of the ancestral genome than have plants, animals or fungi.


Nature Reviews Molecular Cell Biology | 2001

Filamins as integrators of cell mechanics and signalling

Thomas P. Stossel; John Condeelis; Lynn Cooley; John H. Hartwig; Angelika A. Noegel; Michael Schleicher; Sandor S. Shapiro

Filamins are large actin-binding proteins that stabilize delicate three-dimensional actin webs and link them to cellular membranes. They integrate cellular architectural and signalling functions and are essential for fetal development and cell locomotion. Here, we describe the history, structure and function of this group of proteins.


Nature Cell Biology | 2005

The Diaphanous-related formin dDia2 is required for the formation and maintenance of filopodia.

Antje Schirenbeck; Till Bretschneider; Rajesh Arasada; Michael Schleicher; Jan Faix

Formins have important roles in the nucleation of actin and the formation of linear actin filaments, but their role in filopodium formation has remained elusive. Dictyostelium discoideum Diaphanous-related formin dDia2 is enriched at the tips of filopodia and interacts with profilin II and Rac1. An FH1FH2 fragment of dDia2 nucleated actin polymerization and removed capping protein from capped filament ends. Genetic studies showed that dDia2 is important for cell migration as well as the formation, elongation and maintenance of filopodia. Here we provide evidence that dDia2 specifically controls filopodial dynamics by regulating actin turnover at the barbed ends of actin filaments.


Cell | 1994

Dictyostelium amoebae that lack G-actin-sequestering profilins show defects in F-actin content, cytokinesis, and development

Michael Haugwitz; Angelika A. Noegel; Jacques Karakesisoglou; Michael Schleicher

To study in vivo functions of the ubiquitous actin-binding protein profilin, we generated by antisense and gene disruption techniques Dictyostelium mutants that lack one or both of the profilin isoforms. Whereas the single mutants showed an essentially unchanged phenotype, the behavior of the double mutant was drastically altered. Motility was significantly reduced, single cells were up to 10 times larger than wild-type cells and showed a broad rim of filamentous actin below the plasma membrane, the filamentous actin concentration was increased by about 60%-70%, and development was blocked prior to fruiting body formation. Furthermore, double mutants could not be grown in shaking culture under normal conditions, reflecting an impaired cytokinesis. The aberrant phenotype could be rescued by reintroducing a functional profilin I or profilin II gene. The data in this study suggest that profilin functions in Dictyostelium amoebae primarily as an actin-sequestering protein.


Nature | 2002

Sequence and analysis of chromosome 2 of Dictyostelium discoideum

Gernot Glöckner; Ludwig Eichinger; Karol Szafranski; Justin A. Pachebat; Alan T. Bankier; Paul H. Dear; Rüdiger Lehmann; Cornelia Baumgart; Genís Parra; Josep F. Abril; Roderic Guigó; Kai Kumpf; Budi Tunggal; Edward C. Cox; Michael A. Quail; Matthias Platzer; André Rosenthal; Angelika A. Noegel; Bart Barrell; Marie-Adèle Rajandream; Jeffrey G. Williams; Robert R. Kay; Adam Kuspa; Richard A. Gibbs; Richard Sucgang; Donna Muzny; Brian Desany; Kathy Zeng; Baoli Zhu; Pieter J. de Jong

The genome of the lower eukaryote Dictyostelium discoideum comprises six chromosomes. Here we report the sequence of the largest, chromosome 2, which at 8 megabases (Mb) represents about 25% of the genome. Despite an A + T content of nearly 80%, the chromosome codes for 2,799 predicted protein coding genes and 73 transfer RNA genes. This gene density, about 1 gene per 2.6 kilobases (kb), is surpassed only by Saccharomyces cerevisiae (one per 2 kb) and is similar to that of Schizosaccharomyces pombe (one per 2.5 kb). If we assume that the other chromosomes have a similar gene density, we can expect around 11,000 genes in the D. discoideum genome. A significant number of the genes show higher similarities to genes of vertebrates than to those of other fully sequenced eukaryotes. This analysis strengthens the view that the evolutionary position of D. discoideum is located before the branching of metazoa and fungi but after the divergence of the plant kingdom, placing it close to the base of metazoan evolution.


Cellular Microbiology | 2000

Dictyostelium discoideum: a new host model system for intracellular pathogens of the genus Legionella

Sonja Hägele; Rolf Köhler; Hilde Merkert; Michael Schleicher; Jörg Hacker; Michael Steinert

The soil amoeba Dictyostelium discoideum is a haploid eukaryote that, upon starvation, aggregates and enters a developmental cycle to produce fruiting bodies. In this study, we infected single‐cell stages of D. discoideum with different Legionella species. Intracellular growth of Legionella in this new host system was compared with their growth in the natural host Acanthamoeba castellanii. Transmission electron microscopy of infected D. discoideum cells revealed that legionellae reside within the phagosome. Using confocal microscopy, it was observed that replicating, intracellular, green fluorescent protein (GFP)‐tagged legionellae rarely co‐localized with fluorescent antibodies directed against the lysosomal protein DdLIMP of D. discoideum. This indicates that the bacteria inhibit the fusion of phagosomes and lysosomes in this particular host system. In addition, Legionella infection of D. discoideum inhibited the differentiation of the host into the multicellular fruiting stage. Co‐culture studies with profilin‐minus D. discoideum mutants and Legionella resulted in higher rates of infection when compared with infections of wild‐type amoebae. Because the amoebae are amenable to genetic manipulation as a result of their haploid genome and because a number of cellular markers are available, we show for the first time that D. discoideum is a valuable model system for studying intracellular pathogenesis of microbial pathogens.


FEBS Letters | 1987

Calcium‐sensitive non‐muscle α‐actinin contains EF‐hand structures and highly conserved regions

Angelika A. Noegel; Walter Witke; Michael Schleicher

The F‐actin crosslinking molecule α‐actinin from the slime mould Dictyostelium discoideum carries two characteristics EF‐hand structures at the C‐terminus. The calcium‐binding loops contain all necessary liganding oxygens and most likely form the structural basis for the calcium sensitivity of strictly calcium‐regulated non‐muscle α‐actinins. Furthermore, the sequence exhibits at the N‐terminal site of the molecule a high degree of homology to chicken fibroblast α‐actinin. This stretch of amino acids appears to have remained essentially constant during evolution and might represent the actin‐binding site. The findings have led us to propose a model for the inhibitory action of Ca2+ on non‐muscle α‐actinins.


Nature Structural & Molecular Biology | 2004

A mechanical unfolding intermediate in an actin-crosslinking protein

Ingo Schwaiger; Angelika Kardinal; Michael Schleicher; Angelika A. Noegel; Matthias Rief

Many F-actin crosslinking proteins consist of two actin-binding domains separated by a rod domain that can vary considerably in length and structure. In this study, we used single-molecule force spectroscopy to investigate the mechanics of the immunoglobulin (Ig) rod domains of filamin from Dictyostelium discoideum (ddFLN). We find that one of the six Ig domains unfolds at lower forces than do those of all other domains and exhibits a stable unfolding intermediate on its mechanical unfolding pathway. Amino acid inserts into various loops of this domain lead to contour length changes in the single-molecule unfolding pattern. These changes allowed us to map the stable core of ∼60 amino acids that constitutes the unfolding intermediate. Fast refolding in combination with low unfolding forces suggest a potential in vivo role for this domain as a mechanically extensible element within the ddFLN rod.


Cell | 1992

Redundancy in the microfilament system: Abnormal development of dictyostelium cells lacking two F-actin cross-linking proteins

Walter Witke; Michael Schleicher; Angelika A. Noegel

We generated by gene disruption Dictyostelium cells that lacked both the F-actin cross-linking proteins, alpha-actinin and gelation factor. Several major cell functions, such as growth, chemotaxis, phagocytosis, and pinocytosis, were apparently unaltered. However, in all double mutants, development was greatly impaired. After formation of aggregates, cells were very rarely able to form fruiting bodies. This ability was rescued when mutant and wild-type strains were mixed in a ratio of 70 to 30. The developmental program in the mutant was not arrested, since the expression pattern of early and late genes remained unchanged. Development of the mutant was rendered normal when a functional alpha-actinin gene was introduced and expressed, showing the morphogenetic defect to be due to the absence of the two F-actin cross-linking proteins. These findings suggest the existence of a functional network allowing mutual complementation of certain actin-binding proteins.


Journal of Cell Biology | 2008

Prohibitin-1 maintains the angiogenic capacity of endothelial cells by regulating mitochondrial function and senescence

Michael Schleicher; Benjamin R. Shepherd; Yajaira Suárez; Carlos Fernández-Hernando; Jun Yu; Yong Pan; Lisette Acevedo; Gerald S. Shadel; William C. Sessa

Prohibitin 1 (PHB1) is a highly conserved protein that is mainly localized to the inner mitochondrial membrane and has been implicated in regulating mitochondrial function in yeast. Because mitochondria are emerging as an important regulator of vascular homeostasis, we examined PHB1 function in endothelial cells. PHB1 is highly expressed in the vascular system and knockdown of PHB1 in endothelial cells increases mitochondrial production of reactive oxygen species via inhibition of complex I, which results in cellular senescence. As a direct consequence, both Akt and Rac1 are hyperactivated, leading to cytoskeletal rearrangements and decreased endothelial cell motility, e.g., migration and tube formation. This is also reflected in an in vivo angiogenesis assay, where silencing of PHB1 blocks the formation of functional blood vessels. Collectively, our results provide evidence that PHB1 is important for mitochondrial function and prevents reactive oxygen species–induced senescence and thereby maintains the angiogenic capacity of endothelial cells.

Collaboration


Dive into the Michael Schleicher's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tad A. Holak

Jagiellonian University

View shared research outputs
Top Co-Authors

Avatar

Jan Faix

Hannover Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Steinert

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge