Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Stumpe is active.

Publication


Featured researches published by Michael Stumpe.


Phytochemistry Reviews | 2006

Formation of oxylipins by CYP74 enzymes

Michael Stumpe; Ivo Feussner

Lipid peroxidation is common to all biological systems, both appearing in developmentally and environmentally regulated processes. Products are hydroperoxy polyunsaturated fatty acids and metabolites derived there from collectively named oxylipins. They may either originate from chemical oxidation or are synthesized by the action of various enzymes, such as lipoxygenases. Cloning of many lipoxygenases and other key enzymes metabolizing oxylipins revealed new insights on oxylipin functions, new reactions and the first hints on enzyme mechanisms. These aspects are reviewed with respect to metabolism of fatty acid hydroperoxides by an atypical P450 subfamily: the CYP74. Up to now this protein family contains three different enzyme activities: (i) allene oxide synthase leading to the formation of unstable allene oxides which react to ketol and cyclopentenone fatty acids, (ii) hydroperoxide lyase producing hemiacetals decomposing to aldehydes and ω-oxo fatty acids and (iii) divinyl ether synthase which forms divinyl ethers. Signalling compounds such as jasmonates, antimicrobial and antifungal compounds such as leaf aldehydes or divinyl ethers, and a plant-specific blend of volatiles including leaf alcohols are among their numerous products.


FEBS Letters | 2001

A pathogen-inducible divinyl ether synthase (CYP74D) from elicitor-treated potato suspension cells1

Michael Stumpe; Romy Kandzia; Cornelia Göbel; Sabine Rosahl; Ivo Feussner

In elicitor‐treated potato cells, 9‐lipoxygenase‐derived oxylipins accumulate with the divinyl ether colneleic acid as the major metabolite. Here, the identification of a potato cDNA is described, whose predicted amino acid sequence corresponds to divinyl ether synthases, belonging to the recently identified new P450 subfamily CYP74D. The recombinant protein was expressed in Escherichia coli and shown to metabolize 9‐hydroperoxy linoleic acid to colneleic acid at pH 6.5. This fatty acid derivative has been implicated in functioning as a plant antimicrobial compound. RNA blot analyses revealed accumulation of divinyl ether synthase transcripts both upon infiltration of potato leaves with Pseudomonas syringae and after infection with Phytophthora infestans.


New Phytologist | 2010

The moss Physcomitrella patens contains cyclopentenones but no jasmonates: mutations in allene oxide cyclase lead to reduced fertility and altered sporophyte morphology.

Michael Stumpe; Cornelia Göbel; Bernd Faltin; Anna K. Beike; Bettina Hause; Kiyoshi Himmelsbach; Julia Bode; Robert Kramell; Claus Wasternack; Wolfgang Frank; Ralf Reski; Ivo Feussner

• Two cDNAs encoding allene oxide cyclases (PpAOC1, PpAOC2), key enzymes in the formation of jasmonic acid (JA) and its precursor (9S,13S)-12-oxo-phytodienoic acid (cis-(+)-OPDA), were isolated from the moss Physcomitrella patens. • Recombinant PpAOC1 and PpAOC2 show substrate specificity against the allene oxide derived from 13-hydroperoxy linolenic acid (13-HPOTE); PpAOC2 also shows substrate specificity against the allene oxide derived from 12-hydroperoxy arachidonic acid (12-HPETE). • In protonema and gametophores the occurrence of cis-(+)-OPDA, but neither JA nor the isoleucine conjugate of JA nor that of cis-(+)-OPDA was detected. • Targeted knockout mutants for PpAOC1 and for PpAOC2 were generated, while double mutants could not be obtained. The ΔPpAOC1 and ΔPpAOC2 mutants showed reduced fertility, aberrant sporophyte morphology and interrupted sporogenesis.


Planta | 2007

A novel plastidial lipoxygenase of maize (Zea mays) ZmLOX6 encodes for a fatty acid hydroperoxide lyase and is uniquely regulated by phytohormones and pathogen infection

Xiquan Gao; Michael Stumpe; Ivo Feussner; Michael V. Kolomiets

Lipoxygenases (LOXs) are members of a large enzyme family that catalyze oxygenation of free polyunsaturated fatty acids into diverse hydroperoxide compounds, collectively called oxylipins. Although LOXs have been well studied in dicot species, reports of the genes encoding these enzymes are scarce for monocots, especially maize. Herein, we reported the cloning, characterization and molecular functional analysis of a novel maize LOX gene, ZmLOX6. The ZmLOX6 nucleotide sequence encodes a deduced translation product of 892 amino acids. Phylogenetic analysis showed that ZmLOX6 is distantly related to previously reported 9- or 13-LOXs from maize and other plant species, including rice and Arabidopsis. Although sequence prediction suggested cytoplasmic localization of this protein, ZmLOX6 protein has been reportedly isolated from mesophyll cell chloroplasts, emphasizing the unique features of this protein. Plastidial localization was confirmed by chloroplast uptake experiments with the in vitro translated protein. Analysis of recombinant protein revealed that ZmLOX6 has lost fatty acid hydroperoxide forming activity but 13-LOX-derived fatty acid hydroperoxides were cleaved into odd-chain ω-oxo fatty acids and as yet not identified C5-compound. In line with its reported abundance in mesophyll cells, ZmLOX6 was predominantly expressed in leaf tissue. Northern blot analysis demonstrated that ZmLOX6 was induced by jasmonic acid, but repressed by abscisic acid, salicylic acid and ethylene and was not responsive to wounding or insects. Further, this gene was strongly induced by the fungal pathogen Cochliobolus carbonum during compatible interactions, suggesting that ZmLOX6 may contribute to susceptibility to this pathogen. The potential involvement of ZmLOX6 in maize interactions with pathogens is discussed.


Journal of Experimental Botany | 2008

Divinyl ether synthesis in garlic bulbs

Michael Stumpe; Jan-Gerrit Carsjens; Cornelia Göbel; Ivo Feussner

Formation of 13-lipoxygenase-derived divinyl ethers has been described in garlic bulbs. Here, the identification of a cDNA from garlic is described, which encodes for an enzyme that corresponds to divinyl ether synthases (DES). The recombinant protein was expressed in Escherichia coli and shown to metabolize 13-hydroperoxy as well as 9-hydroperoxy linole(n)ic acid to etherole(n)ic and colnele(n)ic acid, respectively. This biochemical feature classifies it as a member of the CYP74C subfamily of cytochrome P-450 enzymes. Product analysis after incubation of purified recombinant enzyme and fatty acid hydroperoxides revealed the formation of a mixture of different cis/trans isomers with one isomer often dominant. RNA blot analyses showed a constitutive expression of DES transcripts predominant in below-ground organs of garlic. By exogenous application of salicylic acid and sorbitol, but not by methyljasmonate, the transcript was also induced in leaves. Whereas the prominent divinyl ether in garlic was the 13-lipoxygenase-derived etheroleic acid, analysis of transgenic Arabidopsis expressing garlic DES showed that 9-lipoxygenase-derived colnelenic acid dominated 24 h after wounding. These data indicate that the product pattern of this DES from garlic depends on the substrate availability and that the enzyme is the first member in the group of 9/13-DES.


FEBS Letters | 2006

Allene oxide synthase from Arabidopsis thaliana (CYP74A1) exhibits dual specificity that is regulated by monomer-micelle association

Richard K. Hughes; Eric J. Belfield; Ruth Ashton; Shirley A. Fairhurst; Cornelia Göbel; Michael Stumpe; Ivo Feussner; Rod Casey

We investigate the effects of detergent on the kinetics and oligomeric state of allene oxide synthase (AOS) from Arabidopsis thaliana (CYP74A1). We show that detergent‐free CYP74A1 is monomeric and highly water soluble with dual specificity, but has relatively low activity. Detergent micelles promote a 48‐fold increase in k cat/K m (to 5.9 × 107 M−1 s−1) with concomitant changes in the spin state equilibrium of the haem‐iron due to the binding of a single detergent micelle to the protein monomer, which is atypical of P450 enzymes. This mechanism is shown to be an important determinant of the substrate specificity of CYP74A1. CYP74A1 may be suited for structural resolution of the first plant cytochrome P450 and its 9‐AOS activity and behaviour in vitro has implications for its role in planta.


Journal of Plant Physiology | 2003

On the specificity of lipid hydroperoxide fragmentation by fatty acid hydroperoxide lyase from Arabidopsis thaliana

Romy Kandzia; Michael Stumpe; Ekkehardt Berndt; Marlena Szalata; Kenji Matsui; Ivo Feussner

Fatty acid hydroperoxide lyase (HPL) is a membrane associated P450 enzyme that cleaves fatty acid hydroperoxides into aldehydes and omega-oxo fatty acids. One of the major products of this reaction is (3Z)-hexenal. It is a constituent of many fresh smelling fruit aromas. For its biotechnological production and because of the lack of structural data on the HPL enzyme family, we investigated the mechanistic reasons for the substrate specificity of HPL by using various structural analogues of HPL substrates. To approach this 13-HPL from Arabidopsis thaliana was cloned and expressed in E. coli utilising a His-Tag expression vector. The fusion protein was purified by affinity chromatography from the E. coli membrane fractions and its pH optimum was detected to be pH 7.2. Then, HPL activity against the respective (9S)- and (13S)-hydroperoxides derived either from linoleic, alpha-linolenic or gamma-linolenic acid, respectively, as well as that against the corresponding methyl esters was analysed. Highest enzyme activity was observed with the (13S)-hydroperoxide of alpha-linolenic acid (13alpha-HPOT) followed by that with its methyl ester. Most interestingly, when the hydroperoxy isomers of gamma-linolenic acid were tested as substrates, 9gamma-HPOT and not 13gamma-HPOT was found to be a better substrate of the enzyme. Taken together from these studies on the substrate specificity it is concluded that At13HPL may not recognise the absolute position of the hydroperoxy group within the substrate, but shows highest activities against substrates with a (1Z4S,5E,7Z)-4-hydroperoxy-1,5,7-triene motif. Thus, At13HPL may not only be used for the production of C6-derived volatiles, but depending on the substrate may be further used for the production of Cg-derived volatiles as well.


BMC Plant Biology | 2012

Biosynthesis of allene oxides in Physcomitrella patens.

Julia Scholz; Florian Brodhun; Ellen Hornung; Cornelia Herrfurth; Michael Stumpe; Anna K. Beike; Bernd Faltin; Wolfgang Frank; Ralf Reski; Ivo Feussner

BackgroundThe moss Physcomitrella patens contains C18- as well as C20-polyunsaturated fatty acids that can be metabolized by different enzymes to form oxylipins such as the cyclopentenone cis(+)-12-oxo phytodienoic acid. Mutants defective in the biosynthesis of cyclopentenones showed reduced fertility, aberrant sporophyte morphology and interrupted sporogenesis. The initial step in this biosynthetic route is the conversion of a fatty acid hydroperoxide to an allene oxide. This reaction is catalyzed by allene oxide synthase (AOS) belonging as hydroperoxide lyase (HPL) to the cytochrome P450 family Cyp74. In this study we characterized two AOS from P. patens, PpAOS1 and PpAOS2.ResultsOur results show that PpAOS1 is highly active with both C18 and C20-hydroperoxy-fatty acid substrates, whereas PpAOS2 is fully active only with C20-substrates, exhibiting trace activity (~1000-fold lower kcat/KM) with C18 substrates. Analysis of products of PpAOS1 and PpHPL further demonstrated that both enzymes have an inherent side activity mirroring the close inter-connection of AOS and HPL catalysis. By employing site directed mutagenesis we provide evidence that single amino acid residues in the active site are also determining the catalytic activity of a 9-/13-AOS – a finding that previously has only been reported for substrate specific 13-AOS. However, PpHPL cannot be converted into an AOS by exchanging the same determinant. Localization studies using YFP-labeled AOS showed that PpAOS2 is localized in the plastid while PpAOS1 may be found in the cytosol. Analysis of the wound-induced cis(+)-12-oxo phytodienoic acid accumulation in PpAOS1 and PpAOS2 single knock-out mutants showed that disruption of PpAOS1, in contrast to PpAOS2, results in a significantly decreased cis(+)-12-oxo phytodienoic acid formation. However, the knock-out mutants of neither PpAOS1 nor PpAOS2 showed reduced fertility, aberrant sporophyte morphology or interrupted sporogenesis.ConclusionsOur study highlights five findings regarding the oxylipin metabolism in P. patens: (i) Both AOS isoforms are capable of metabolizing C18- and C20-derived substrates with different specificities suggesting that both enzymes might have different functions. (ii) Site directed mutagenesis demonstrated that the catalytic trajectories of 9-/13-PpAOS1 and PpHPL are closely inter-connected and PpAOS1 can be inter-converted by a single amino acid exchange into a HPL. (iii) In contrast to PpAOS1, PpAOS2 is localized in the plastid where oxylipin metabolism takes place. (iv) PpAOS1 is essential for wound-induced accumulation of cis(+)-12-oxo phytodienoic acid while PpAOS2 appears not to be involved in the process. (v) Knock-out mutants of neither AOS showed a deviating morphological phenotype suggesting that there are overlapping functions with other Cyp74 enzymes.


Lipids | 2003

Kinetics of barley FA hydroperoxide lyase are modulated by salts and detergents.

Takao Koeduka; Michael Stumpe; Tadahiko Kajiwara; Ivo Feussner

The cDNA from barley coding FA hydroperoxide lyase (HPL) was cloned. A recombinant protein derived from the cDNA was expressed in Escherichia coli as an active enzyme. Thus far, there have been no reports on HPL in monocotyledonous plants. The recombinant protein was shown to be most active to linolenic acid 13-hydroperoxide, followed by linoleic acid 13-hydroperoxide. 9-Hydroperoxides of the FA could not be substrates for the recombinant HPL. The activity was dramatically enhanced in the presence of a detergent and/or a salt in the reaction mixture. At the same time, the kinetics of the reaction, including inactivation and the Vmax value of the HPL, were also greatly modulated, depending on the concentration of a monovalent cation and/or a detergent in the reaction mixture. These results suggest that these effectors induced a conformational change in barley HPL, resulting in an improvement in substrate binding and in enzyme activity.


Journal of Experimental Botany | 2017

Protein phosphatase AP2C1 negatively regulates basal resistance and defense responses to Pseudomonas syringae

Volodymyr Shubchynskyy; Justyna Boniecka; Alois Schweighofer; Justinas Simulis; Kotryna Kvederaviciute; Michael Stumpe; Felix Mauch; Salma Balazadeh; Bernd Mueller-Roeber; Freddy Boutrot; Cyril Zipfel; Irute Meskiene

&NA; Mitogen‐activated protein kinases (MAPKs) mediate plant immune responses to pathogenic bacteria. However, less is known about the cell autonomous negative regulatory mechanism controlling basal plant immunity. We report the biological role of Arabidopsis thaliana MAPK phosphatase AP2C1 as a negative regulator of plant basal resistance and defense responses to Pseudomonas syringae. AP2C2, a closely related MAPK phosphatase, also negatively controls plant resistance. Loss of AP2C1 leads to enhanced pathogen‐induced MAPK activities, increased callose deposition in response to pathogen‐associated molecular patterns or to P. syringae pv. tomato (Pto) DC3000, and enhanced resistance to bacterial infection with Pto. We also reveal the impact of AP2C1 on the global transcriptional reprogramming of transcription factors during Pto infection. Importantly, ap2c1 plants show salicylic acid‐independent transcriptional reprogramming of several defense genes and enhanced ethylene production in response to Pto. This study pinpoints the specificity of MAPK regulation by the different MAPK phosphatases AP2C1 and MKP1, which control the same MAPK substrates, nevertheless leading to different downstream events. We suggest that precise and specific control of defined MAPKs by MAPK phosphatases during plant challenge with pathogenic bacteria can strongly influence plant resistance.

Collaboration


Dive into the Michael Stumpe's collaboration.

Top Co-Authors

Avatar

Ivo Feussner

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ralf Reski

University of Freiburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge