Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael T. Eadon is active.

Publication


Featured researches published by Michael T. Eadon.


Clinical Pharmacology & Therapeutics | 2016

Implementation of a pharmacogenomics consult service to support the INGENIOUS trial

Michael T. Eadon; Zeruesenay Desta; Kenneth D. Levy; Brian S. Decker; Rc Pierson; Victoria M. Pratt; J T Callaghan; Marc B. Rosenman; Janet S. Carpenter; Ann M. Holmes; Ca McDonald; Eric A. Benson; As Patil; Raj Vuppalanchi; Brandon T. Gufford; N. Dave; Jd Robarge; Ma Hyder; Dm Haas; Rolf P. Kreutz; Paul R. Dexter; Todd C. Skaar; David A. Flockhart

Hospital systems increasingly utilize pharmacogenomic testing to inform clinical prescribing. Successful implementation efforts have been modeled at many academic centers. In contrast, this report provides insights into the formation of a pharmacogenomics consultation service at a safety‐net hospital, which predominantly serves low‐income, uninsured, and vulnerable populations. The report describes the INdiana GENomics Implementation: an Opportunity for the UnderServed (INGENIOUS) trial and addresses concerns of adjudication, credentialing, and funding.


Immunology | 2014

Transcriptional profiling reveals that C5a alters microRNA in brain endothelial cells

Michael T. Eadon; Alexander Jacob; Patrick N. Cunningham; Richard J. Quigg; Joe G. N. Garcia; Jessy J. Alexander

Blood–brain barrier (BBB) disturbance is a crucial occurrence in many neurological diseases, including systemic lupus erythematosus (SLE). Our previous studies showed that experimental lupus serum altered the integrity of the mouse brain endothelial layer, an important constituent of the BBB. Complement activation occurs in lupus with increased circulating complement components. Using a genomics approach, we identified the microRNA (miRNA) altered in mouse brain endothelial cells (bEnd3) by lupus serum and the complement protein, C5a. Of the 318 miRNA evaluated, 23 miRNAs were altered by lupus serum and 32 were altered by C5a alone compared with controls. Seven miRNAs (P < 0·05) were differentially expressed by both treatments: mmu‐miR‐133a*, mmu‐miR‐193*, mmu‐miR‐26b, mmu‐miR‐28*, mmu‐miR‐320a, mmu‐miR‐423‐3p and mmu‐miR‐509‐5p. The microarray results were validated by quantitative RT‐PCR. In line with the in vitro results, expression of miR‐26b and miR‐28* were also significantly up‐regulated in lupus mouse brain which was reduced by C5a receptor inhibition. Target prediction analysis revealed miR gene targets encoding components involved in inflammation, matrix arrangement, and apoptosis, pathways known to play important roles in central nervous system lupus. Our findings suggest that the miRNAs reported in this study may represent novel therapeutic targets in central nervous system lupus and other similar neuroinflammatory settings.


Physiological Genomics | 2013

Cell cycle arrest in a model of colistin nephrotoxicity

Michael T. Eadon; Bradley K. Hack; Jessy J. Alexander; Chang Xu; M. Eileen Dolan; Patrick N. Cunningham

Colistin (polymixin E) is an antibiotic prescribed with resurging frequency for multidrug resistant gram negative bacterial infections. It is associated with nephrotoxicity in humans in up to 55% of cases. Little is known regarding genes involved in colistin nephrotoxicity. A murine model of colistin-mediated kidney injury was developed. C57/BL6 mice were administered saline or colistin at a dose of 16 mg/kg/day in 2 divided intraperitoneal doses and killed after either 3 or 15 days of colistin. After 15 days, mice exposed to colistin had elevated blood urea nitrogen (BUN), creatinine, and pathologic evidence of acute tubular necrosis and apoptosis. After 3 days, mice had neither BUN elevation nor substantial pathologic injury; however, urinary neutrophil gelatinase-associated lipocalin was elevated (P = 0.017). An Illumina gene expression array was performed on kidney RNA harvested 72 h after first colistin dose to identify differentially expressed genes early in drug treatment. Array data revealed 21 differentially expressed genes (false discovery rate < 0.1) between control and colistin-exposed mice, including LGALS3 and CCNB1. The gene signature was significantly enriched for genes involved in cell cycle proliferation. RT-PCR, immunoblot, and immunostaining validated the relevance of key genes and proteins. This murine model offers insights into the potential mechanism of colistin-mediated nephrotoxicity. Further studies will determine whether the identified genes play a causative or protective role in colistin-induced nephrotoxicity.


Frontiers in Pharmacology | 2016

Rifampin Regulation of Drug Transporters Gene Expression and the Association of MicroRNAs in Human Hepatocytes

Eric A. Benson; Michael T. Eadon; Zeruesenay Desta; Yunlong Liu; Hai Lin; Kimberly S. Burgess; Matthew W. Segar; Andrea Gaedigk; Todd C. Skaar

Membrane drug transporters contribute to the disposition of many drugs. In human liver, drug transport is controlled by two main superfamilies of transporters, the solute carrier transporters (SLC) and the ATP Binding Cassette transporters (ABC). Altered expression of these transporters due to drug-drug interactions can contribute to differences in drug exposure and possibly effect. In this study, we determined the effect of rifampin on gene expression of hundreds of membrane transporters along with all clinically relevant drug transporters. Methods: In this study, primary human hepatocytes (n = 7 donors) were cultured and treated for 24 h with rifampin and vehicle control. RNA was isolated from the hepatocytes, mRNA expression was measured by RNA-seq, and miRNA expression was analyzed by Taqman OpenArray. The effect of rifampin on the expression of selected transporters was also tested in kidney cell lines. The impact of rifampin on the expression of 410 transporter genes from 19 different transporter gene families was compared with vehicle control. Results: Expression patterns of 12 clinically relevant drug transporter genes were changed by rifampin (FDR < 0.05). For example, the expressions of ABCC2, ABCB1, and ABCC3 were increased 1.9-, 1.7-, and 1.2-fold, respectively. The effects of rifampin on four uptake drug transporters (SLCO1B3, SLC47A1, SLC29A1, SLC22A9) were negatively correlated with the rifampin effects on specific microRNA expression (SLCO1B3/miR-92a, SLC47A1/miR-95, SLC29A1/miR-30d#, and SLC22A9/miR-20; r < −0.79; p < 0.05). Seven hepatic drug transporter genes (SLC22A1, SLC22A5, SLC15A1, SLC29A1, SLCO4C1, ABCC2, and ABCC4), whose expression was altered by rifampin in hepatocytes, were also present in a renal proximal tubular cell line, but in renal cells rifampin did not alter their gene expression. PXR expression was very low in the kidney cells; this may explain why rifampin induces gene expression in a tissue-specific manner. Conclusion: Rifampin alters the expression of many of the clinically relevant hepatic drug transporters, which may provide a rational basis for understanding rifampin-induced drug-drug interactions reported in vivo. The relevance of its effect on many other transporters remains to be studied.


Value in Health | 2017

Lessons Learned When Introducing Pharmacogenomic Panel Testing into Clinical Practice

Marc B. Rosenman; Brian S. Decker; Kenneth D. Levy; Ann M. Holmes; Victoria M. Pratt; Michael T. Eadon

OBJECTIVES Implementing new programs to support precision medicine in clinical settings is a complex endeavor. We describe challenges and potential solutions based on the Indiana GENomics Implementation: an Opportunity for the Underserved (INGenious) program at Eskenazi Health-one of six sites supported by the Implementing GeNomics In pracTicE network grant of the National Institutes of Health/National Human Genome Research Institute. INGenious is an implementation of a panel of genomic tests. METHODS We conducted a descriptive case study of the implementation of this pharmacogenomics program, which has a wide scope (14 genes, 27 medications) and a diverse population (patients who often have multiple chronic illnesses, in a large urban safety-net hospital and its outpatient clinics). CHALLENGES We placed the clinical pharmacogenomics implementation challenges into six categories: patient education and engagement in care decision making; clinician education and changes in standards of care; integration of technology into electronic health record systems; translational and implementation sciences in real-world clinical environments; regulatory and reimbursement considerations, and challenges in measuring outcomes. A cross-cutting theme was the need for careful attention to workflow. Our clinical setting, a safety-net health care system, presented some distinctive challenges. Patients often had multiple chronic illnesses and sometimes were taking more than one pharmacogenomics-relevant medication. Reaching patients for recruitment or follow-up was another challenge. CONCLUSIONS New, large-scale endeavors in health care are challenging. A description of the challenges that we encountered and the approaches that we adopted to address them may provide insights for those who implement and study innovations in other health care systems.


Journal of The American Society of Nephrology | 2017

Quantitative Three-Dimensional Tissue Cytometry to Study Kidney Tissue and Resident Immune Cells

Seth Winfree; Shehnaz Khan; Radmila Micanovic; Michael T. Eadon; Katherine J. Kelly; Timothy A. Sutton; Carrie L. Phillips; Kenneth W. Dunn; Tarek M. El-Achkar

Analysis of the immune system in the kidney relies predominantly on flow cytometry. Although powerful, the process of tissue homogenization necessary for flow cytometry analysis introduces bias and results in the loss of morphologic landmarks needed to determine the spatial distribution of immune cells. An ideal approach would support three-dimensional (3D) tissue cytometry: an automated quantitation of immune cells and associated spatial parameters in 3D image volumes collected from intact kidney tissue. However, widespread application of this approach is limited by the lack of accessible software tools for digital analysis of large 3D microscopy data. Here, we describe Volumetric Tissue Exploration and Analysis (VTEA) image analysis software designed for efficient exploration and quantitative analysis of large, complex 3D microscopy datasets. In analyses of images collected from fixed kidney tissue, VTEA replicated the results of flow cytometry while providing detailed analysis of the spatial distribution of immune cells in different regions of the kidney and in relation to specific renal structures. Unbiased exploration with VTEA enabled us to discover a population of tubular epithelial cells that expresses CD11C, a marker typically expressed on dendritic cells. Finally, we show the use of VTEA for large-scale quantitation of immune cells in entire human kidney biopsies. In summary, we show that VTEA is a simple and effective tool that supports unique digital interrogation and analysis of kidney tissue from animal models or biobanked human kidney biopsies. We have made VTEA freely available to interested investigators via electronic download.


Advances in Chronic Kidney Disease | 2016

A Physiologic Approach to the Pharmacogenomics of Hypertension

Michael T. Eadon; Arlene B. Chapman

Hypertension is a multifactorial condition with diverse physiological systems contributing to its pathogenesis. Individuals exhibit significant variation in their response to antihypertensive agents. Traditional markers, such as age, gender, diet, plasma renin level, and ethnicity, aid in drug selection. However, this review explores the contribution of genetics to facilitate antihypertensive agent selection and predict treatment efficacy. The findings, reproducibility, and limitations of published studies are examined, with emphasis placed on candidate genetic variants affecting drug metabolism, the renin-angiotensin system, adrenergic signalling, and renal sodium reabsorption. Single-nucleotide polymorphisms identified and replicated in unbiased genome-wide association studies of hypertension treatment are reviewed to illustrate the evolving understanding of the diseases complex and polygenic pathophysiology. Implementation efforts at academic centers seek to overcome barriers to the broad adoption of pharmacogenomics in the treatment of hypertension. The level of evidence required to support the implementation of pharmacogenomics in clinical practice is considered.


Pharmacogenomics | 2017

Clinical and educational impact of pharmacogenomics testing: a case series from the INGENIOUS trial

Rebecca C. Pierson; Brandon T. Gufford; Zeruesenay Desta; Michael T. Eadon

Pharmacogenomic testing has become increasingly widespread. However, there remains a need to bridge the gap between test results and providers lacking the expertise required to interpret these results. The Indiana Genomics Implementation trial is underway at our institution to examine total healthcare cost and patient outcomes after genotyping in a safety-net healthcare system. As part of the study, trial investigators and clinical pharmacology fellows interpret genotype results, review patient histories and medication lists and evaluate potential drug-drug interactions. We present a case series of patients in whom pharmacogenomic consultations aided providers in appropriately applying pharmacogenomic results within the clinical context. Formal consultations not only provide valuable patient care information but educational opportunities for the fellows to cement pharmacogenomic concepts.


International Journal of Molecular Sciences | 2017

Genetic Variants Contributing to Colistin Cytotoxicity: Identification of TGIF1 and HOXD10 Using a Population Genomics Approach

Michael T. Eadon; Ronald J. Hause; Amy L. Stark; Ying Hua Cheng; Heather E. Wheeler; Kimberly S. Burgess; Eric A. Benson; Patrick N. Cunningham; Robert L. Bacallao; Pierre C. Dagher; Todd C. Skaar; M. Eileen Dolan

Colistin sulfate (polymixin E) is an antibiotic prescribed with increasing frequency for severe Gram-negative bacterial infections. As nephrotoxicity is a common side effect, the discovery of pharmacogenomic markers associated with toxicity would benefit the utility of this drug. Our objective was to identify genetic markers of colistin cytotoxicity that were also associated with expression of key proteins using an unbiased, whole genome approach and further evaluate the functional significance in renal cell lines. To this end, we employed International HapMap lymphoblastoid cell lines (LCLs) of Yoruban ancestry with known genetic information to perform a genome-wide association study (GWAS) with cellular sensitivity to colistin. Further association studies revealed that single nucleotide polymorphisms (SNPs) associated with gene expression and protein expression were significantly enriched in SNPs associated with cytotoxicity (p ≤ 0.001 for gene and p = 0.015 for protein expression). The most highly associated SNP, chr18:3417240 (p = 6.49 × 10−8), was nominally a cis-expression quantitative trait locus (eQTL) of the gene TGIF1 (transforming growth factor β (TGFβ)-induced factor-1; p = 0.021) and was associated with expression of the protein HOXD10 (homeobox protein D10; p = 7.17 × 10−5). To demonstrate functional relevance in a murine colistin nephrotoxicity model, HOXD10 immunohistochemistry revealed upregulated protein expression independent of mRNA expression in response to colistin administration. Knockdown of TGIF1 resulted in decreased protein expression of HOXD10 and increased resistance to colistin cytotoxicity. Furthermore, knockdown of HOXD10 in renal cells also resulted in increased resistance to colistin cytotoxicity, supporting the physiological relevance of the initial genomic associations.


Pharmacology Research & Perspectives | 2018

Rifampin modulation of xeno‐ and endobiotic conjugating enzyme mRNA expression and associated microRNAs in human hepatocytes

Brandon T. Gufford; Jason D. Robarge; Michael T. Eadon; Hongyu Gao; Hai Lin; Yunlong Liu; Zeruesenay Desta; Todd C. Skaar

Rifampin is a pleiotropic inducer of multiple drug metabolizing enzymes and transporters. This work utilized a global approach to evaluate rifampin effects on conjugating enzyme gene expression with relevance to human xeno‐ and endo‐biotic metabolism. Primary human hepatocytes from 7 subjects were treated with rifampin (10 μmol/L, 24 hours). Standard methods for RNA‐seq library construction, EZBead preparation, and NextGen sequencing were used to measure UDP‐glucuronosyl transferase UGT, sulfonyltransferase SULT, N acetyltransferase NAT, and glutathione‐S‐transferase GST mRNA expression compared to vehicle control (0.01% MeOH). Rifampin‐induced (>1.25‐fold) mRNA expression of 13 clinically important phase II drug metabolizing genes and repressed (>1.25‐fold) the expression of 3 genes (P < .05). Rifampin‐induced miRNA expression changes correlated with mRNA changes and miRNAs were identified that may modulate conjugating enzyme expression. NAT2 gene expression was most strongly repressed (1.3‐fold) by rifampin while UGT1A4 and UGT1A1 genes were most strongly induced (7.9‐ and 4.8‐fold, respectively). Physiologically based pharmacokinetic modeling (PBPK) was used to simulate the clinical consequences of rifampin induction of CYP3A4‐ and UGT1A4‐mediated midazolam metabolism. Simulations evaluating isolated UGT1A4 induction predicted increased midazolam N‐glucuronide exposure (~4‐fold) with minimal reductions in parent midazolam exposure (~10%). Simulations accounting for simultaneous induction of both CYP3A4 and UGT1A4 predicted a ~10‐fold decrease in parent midazolam exposure with only a ~2‐fold decrease in midazolam N‐glucuronide metabolite exposure. These data reveal differential effects of rifampin on the human conjugating enzyme transcriptome and potential associations with miRNAs that form the basis for future mechanistic studies to elucidate the interplay of conjugating enzyme regulatory elements.

Collaboration


Dive into the Michael T. Eadon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge