Michael T. Schaub
Imperial College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael T. Schaub.
Nature Methods | 2017
Vladimir Yu. Kiselev; Kristina Kirschner; Michael T. Schaub; Tallulah S. Andrews; Andrew Yiu; Tamir Chandra; Kedar Nath Natarajan; Wolf Reik; Mauricio Barahona; Anthony R. Green; Martin Hemberg
Single-cell RNA-seq enables the quantitative characterization of cell types based on global transcriptome profiles. We present single-cell consensus clustering (SC3), a user-friendly tool for unsupervised clustering, which achieves high accuracy and robustness by combining multiple clustering solutions through a consensus approach (http://bioconductor.org/packages/SC3). We demonstrate that SC3 is capable of identifying subclones from the transcriptomes of neoplastic cells collected from patients.
PLOS ONE | 2012
Michael T. Schaub; Jean-Charles Delvenne; Sophia N. Yaliraki; Mauricio Barahona
In recent years, there has been a surge of interest in community detection algorithms for complex networks. A variety of computational heuristics, some with a long history, have been proposed for the identification of communities or, alternatively, of good graph partitions. In most cases, the algorithms maximize a particular objective function, thereby finding the ‘right’ split into communities. Although a thorough comparison of algorithms is still lacking, there has been an effort to design benchmarks, i.e., random graph models with known community structure against which algorithms can be evaluated. However, popular community detection methods and benchmarks normally assume an implicit notion of community based on clique-like subgraphs, a form of community structure that is not always characteristic of real networks. Specifically, networks that emerge from geometric constraints can have natural non clique-like substructures with large effective diameters, which can be interpreted as long-range communities. In this work, we show that long-range communities escape detection by popular methods, which are blinded by a restricted ‘field-of-view’ limit, an intrinsic upper scale on the communities they can detect. The field-of-view limit means that long-range communities tend to be overpartitioned. We show how by adopting a dynamical perspective towards community detection [1], [2], in which the evolution of a Markov process on the graph is used as a zooming lens over the structure of the network at all scales, one can detect both clique- or non clique-like communities without imposing an upper scale to the detection. Consequently, the performance of algorithms on inherently low-diameter, clique-like benchmarks may not always be indicative of equally good results in real networks with local, sparser connectivity. We illustrate our ideas with constructive examples and through the analysis of real-world networks from imaging, protein structures and the power grid, where a multiscale structure of non clique-like communities is revealed.
Journal of Computational Neuroscience | 2012
Michael T. Schaub; Simon R. Schultz
The Ising model has recently received much attention for the statistical description of neural spike train data. In this paper, we propose and demonstrate its use for building decoders capable of predicting, on a millisecond timescale, the stimulus represented by a pattern of neural activity. After fitting to a training dataset, the Ising decoder can be applied “online” for instantaneous decoding of test data. While such models can be fit exactly using Boltzmann learning, this approach rapidly becomes computationally intractable as neural ensemble size increases. We show that several approaches, including the Thouless–Anderson–Palmer (TAP) mean field approach from statistical physics, and the recently developed Minimum Probability Flow Learning (MPFL) algorithm, can be used for rapid inference of model parameters in large-scale neural ensembles. Use of the Ising model for decoding, unlike other problems such as functional connectivity estimation, requires estimation of the partition function. As this involves summation over all possible responses, this step can be limiting. Mean field approaches avoid this problem by providing an analytical expression for the partition function. We demonstrate these decoding techniques by applying them to simulated neural ensemble responses from a mouse visual cortex model, finding an improvement in decoder performance for a model with heterogeneous as opposed to homogeneous neural tuning and response properties. Our results demonstrate the practicality of using the Ising model to read out, or decode, spatial patterns of activity comprised of many hundreds of neurons.
arXiv: Physics and Society | 2013
Jean-Charles Delvenne; Michael T. Schaub; Sophia N. Yaliraki; Mauricio Barahona
Recent years have seen a surge of interest in the analysis of complex systems. This trend has been facilitated by the availability of relational data and the increasingly powerful computational resources that can be employed for their analysis. A unifying concept in the study of complex systems is their formalisation as networks comprising a large number of non-trivially interacting agents. By considering a network perspective, it is hoped to gain a deepened understanding of system-level properties beyond what could be achieved by focussing solely on the constituent units. Naturally, the study of real-world systems leads to highly complex networks and a current challenge is to extract intelligible, simplified descriptions from the network in terms of relevant subgraphs (or communities), which can provide insight into the structure and function of the overall system.
PLOS Computational Biology | 2016
Karol A. Bacik; Michael T. Schaub; Mariano Beguerisse-Díaz; Yazan N. Billeh; Mauricio Barahona
We exploit flow propagation on the directed neuronal network of the nematode C. elegans to reveal dynamically relevant features of its connectome. We find flow-based groupings of neurons at different levels of granularity, which we relate to functional and anatomical constituents of its nervous system. A systematic in silico evaluation of the full set of single and double neuron ablations is used to identify deletions that induce the most severe disruptions of the multi-resolution flow structure. Such ablations are linked to functionally relevant neurons, and suggest potential candidates for further in vivo investigation. In addition, we use the directional patterns of incoming and outgoing network flows at all scales to identify flow profiles for the neurons in the connectome, without pre-imposing a priori categories. The four flow roles identified are linked to signal propagation motivated by biological input-response scenarios.
Journal of Neuroscience Methods | 2014
Yazan N. Billeh; Michael T. Schaub; Costas A. Anastassiou; Mauricio Barahona; Christof Koch
BACKGROUND Current neuronal monitoring techniques, such as calcium imaging and multi-electrode arrays, enable recordings of spiking activity from hundreds of neurons simultaneously. Of primary importance in systems neuroscience is the identification of cell assemblies: groups of neurons that cooperate in some form within the recorded population. NEW METHOD We introduce a simple, integrated framework for the detection of cell-assemblies from spiking data without a priori assumptions about the size or number of groups present. We define a biophysically-inspired measure to extract a directed functional connectivity matrix between both excitatory and inhibitory neurons based on their spiking history. The resulting network representation is analyzed using the Markov Stability framework, a graph theoretical method for community detection across scales, to reveal groups of neurons that are significantly related in the recorded time-series at different levels of granularity. RESULTS AND COMPARISON WITH EXISTING METHODS Using synthetic spike-trains, including simulated data from leaky-integrate-and-fire networks, our method is able to identify important patterns in the data such as hierarchical structure that are missed by other standard methods. We further apply the method to experimental data from retinal ganglion cells of mouse and salamander, in which we identify cell-groups that correspond to known functional types, and to hippocampal recordings from rats exploring a linear track, where we detect place cells with high fidelity. CONCLUSIONS We present a versatile method to detect neural assemblies in spiking data applicable across a spectrum of relevant scales that contributes to understanding spatio-temporal information gathered from systems neuroscience experiments.
PLOS Computational Biology | 2015
Michael T. Schaub; Yazan N. Billeh; Costas A. Anastassiou; Christof Koch; Mauricio Barahona
Unraveling the interplay between connectivity and spatio-temporal dynamics in neuronal networks is a key step to advance our understanding of neuronal information processing. Here we investigate how particular features of network connectivity underpin the propensity of neural networks to generate slow-switching assembly (SSA) dynamics, i.e., sustained epochs of increased firing within assemblies of neurons which transition slowly between different assemblies throughout the network. We show that the emergence of SSA activity is linked to spectral properties of the asymmetric synaptic weight matrix. In particular, the leading eigenvalues that dictate the slow dynamics exhibit a gap with respect to the bulk of the spectrum, and the associated Schur vectors exhibit a measure of block-localization on groups of neurons, thus resulting in coherent dynamical activity on those groups. Through simple rate models, we gain analytical understanding of the origin and importance of the spectral gap, and use these insights to develop new network topologies with alternative connectivity paradigms which also display SSA activity. Specifically, SSA dynamics involving excitatory and inhibitory neurons can be achieved by modifying the connectivity patterns between both types of neurons. We also show that SSA activity can occur at multiple timescales reflecting a hierarchy in the connectivity, and demonstrate the emergence of SSA in small-world like networks. Our work provides a step towards understanding how network structure (uncovered through advancements in neuroanatomy and connectomics) can impact on spatio-temporal neural activity and constrain the resulting dynamics.
Chaos | 2016
Michael T. Schaub; Neave O'Clery; Yazan N. Billeh; Jean-Charles Delvenne; Renaud Lambiotte; Mauricio Barahona
Synchronization over networks depends strongly on the structure of the coupling between the oscillators. When the coupling presents certain regularities, the dynamics can be coarse-grained into clusters by means of External Equitable Partitions of the network graph and their associated quotient graphs. We exploit this graph-theoretical concept to study the phenomenon of cluster synchronization, in which different groups of nodes converge to distinct behaviors. We derive conditions and properties of networks in which such clustered behavior emerges and show that the ensuing dynamics is the result of the localization of the eigenvectors of the associated graph Laplacians linked to the existence of invariant subspaces. The framework is applied to both linear and non-linear models, first for the standard case of networks with positive edges, before being generalized to the case of signed networks with both positive and negative interactions. We illustrate our results with examples of both signed and unsigned graphs for consensus dynamics and for partial synchronization of oscillator networks under the master stability function as well as Kuramoto oscillators.
Nature Communications | 2016
Benjamin R. C. Amor; Michael T. Schaub; Sophia N. Yaliraki; Mauricio Barahona
Allostery is a fundamental mechanism of biological regulation, in which binding of a molecule at a distant location affects the active site of a protein. Allosteric sites provide targets to fine-tune protein activity, yet we lack computational methodologies to predict them. Here we present an efficient graph-theoretical framework to reveal allosteric interactions (atoms and communication pathways strongly coupled to the active site) without a priori information of their location. Using an atomistic graph with energy-weighted covalent and weak bonds, we define a bond-to-bond propensity quantifying the non-local effect of instantaneous bond fluctuations propagating through the protein. Significant interactions are then identified using quantile regression. We exemplify our method with three biologically important proteins: caspase-1, CheY, and h-Ras, correctly predicting key allosteric interactions, whose significance is additionally confirmed against a reference set of 100 proteins. The almost-linear scaling of our method renders it suitable for high-throughput searches for candidate allosteric sites.
Network Science | 2014
Michael T. Schaub; Jörg Lehmann; Sophia N. Yaliraki; Mauricio Barahona
The analysis of complex networks has so far revolved mainly around the role of nodes and communities of nodes. However, the dynamics of interconnected systems is often focalised on edge processes, and a dual edge-centric perspective can often prove more natural. Here we present graph-theoretical measures to quantify edge-to-edge relations inspired by the notion of flow redistribution induced by edge failures. Our measures, which are related to the pseudo-inverse of the Laplacian of the network, are global and reveal the dynamical interplay between the edges of a network, including potentially non-local interactions. Our framework also allows us to define the embeddedness of an edge, a measure of how strongly an edge features in the weighted cuts of the network. We showcase the general applicability of our edge-centric framework through analyses of the Iberian Power grid, traffic flow in road networks, and the C. elegans neuronal network.