Michael Tri H. Do
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael Tri H. Do.
Nature | 2000
Peter Coopman; Michael Tri H. Do; Mara Barth; Emma T. Bowden; Andrew J. Hayes; Eugenia Basyuk; Jan Blancato; Phyllis R. Vezza; Sandra W. McLeskey; Paul Mangeat; Susette C. Mueller
Syk is a protein tyrosine kinase that is widely expressed in haematopoietic cells. It is involved in coupling activated immunoreceptors to downstream signalling events that mediate diverse cellular responses including proliferation, differentiation and phagocytosis. Syk expression has been reported in cell lines of epithelial origin, but its function in these cells remains unknown. Here we show that Syk is commonly expressed in normal human breast tissue, benign breast lesions and low-tumorigenic breast cancer cell lines. Syk messenger RNA and protein, however, are low or undetectable in invasive breast carcinoma tissue and cell lines. Transfection of wild-type Syk into a Syk-negative breast cancer cell line markedly inhibited its tumour growth and metastasis formation in athymic mice. Conversely, overexpression of a kinase-deficient Syk in a Syk-positive breast cancer cell line significantly increased its tumour incidence and growth. Suppression of tumour growth by the reintroduction of Syk appeared to be the result of aberrant mitosis and cytokinesis. We propose that Syk is a potent modulator of epithelial cell growth and a potential tumour suppressor in human breast carcinomas.
Nature | 2009
Michael Tri H. Do; Shin H. Kang; Tian Xue; Haining Zhong; Hsi Wen Liao; Dwight E. Bergles; King Wai Yau
A subset of retinal ganglion cells has recently been discovered to be intrinsically photosensitive, with melanopsin as the pigment. These cells project primarily to brain centres for non-image-forming visual functions such as the pupillary light reflex and circadian photoentrainment. How well they signal intrinsic light absorption to drive behaviour remains unclear. Here we report fundamental parameters governing their intrinsic light responses and associated spike generation. The membrane density of melanopsin is 104-fold lower than that of rod and cone pigments, resulting in a very low photon catch and a phototransducing role only in relatively bright light. Nonetheless, each captured photon elicits a large and extraordinarily prolonged response, with a unique shape among known photoreceptors. Notably, like rods, these cells are capable of signalling single-photon absorption. A flash causing a few hundred isomerized melanopsin molecules in a retina is sufficient for reaching threshold for the pupillary light reflex.
Nature | 2011
Tian Xue; Michael Tri H. Do; Antonio Riccio; Z. Jiang; Jenny Hsieh; Hui Wang; Shannath L. Merbs; D. S. Welsbie; T. Yoshioka; P. Weissgerber; S. Stolz; Veit Flockerzi; M. Freichel; Melvin I. Simon; David E. Clapham; King Wai Yau
Non-mammalian vertebrates have an intrinsically photosensitive iris and thus a local pupillary light reflex (PLR). In contrast, it is thought that the PLR in mammals generally requires neuronal circuitry connecting the eye and the brain. Here we report that an intrinsic component of the PLR is in fact widespread in nocturnal and crepuscular mammals. In mouse, this intrinsic PLR requires the visual pigment melanopsin; it also requires PLCβ4, a vertebrate homologue of the Drosophila NorpA phospholipase C which mediates rhabdomeric phototransduction. The Plcb4−/− genotype, in addition to removing the intrinsic PLR, also essentially eliminates the intrinsic light response of the M1 subtype of melanopsin-expressing, intrinsically photosensitive retinal ganglion cells (M1-ipRGCs), which are by far the most photosensitive ipRGC subtype and also have the largest response to light. Ablating in mouse the expression of both TRPC6 and TRPC7, members of the TRP channel superfamily, also essentially eliminated the M1-ipRGC light response but the intrinsic PLR was not affected. Thus, melanopsin signalling exists in both iris and retina, involving a PLCβ4-mediated pathway that nonetheless diverges in the two locations.
The Journal of Neuroscience | 2011
Tiffany M. Schmidt; Michael Tri H. Do; Dennis M. Dacey; Robert J. Lucas; Samer Hattar; and Anna Matynia
Melanopsin imparts an intrinsic photosensitivity to a subclass of retinal ganglion cells (ipRGCs). Generally thought of as irradiance detectors, ipRGCs target numerous brain regions involved in non-image-forming vision. ipRGCs integrate their intrinsic, melanopsin-mediated light information with rod/cone signals relayed via synaptic connections to influence light-dependent behaviors. Early observations indicated diversity among these cells and recently several specific subtypes have been identified. These subtypes differ in morphological and physiological form, controlling separate functions that range from biological rhythm via circadian photoentrainment, to protective behavioral responses including pupil constriction and light avoidance, and even image-forming vision. In this Mini-Symposium review, we will discuss some recent findings that highlight the diversity in both form and function of these recently discovered atypical photoreceptors.
Current Opinion in Neurobiology | 2005
Yingbin Fu; Hsi Wen Liao; Michael Tri H. Do; King Wai Yau
It has been accepted for a hundred years or more that rods and cones are the only photoreceptive cells in the retina. The light signals generated in rods and cones, after processing by downstream retinal neurons (bipolar, horizontal, amacrine and ganglion cells), are transmitted to the brain via the axons of the ganglion cells for further analysis. In the past few years, however, convincing evidence has rapidly emerged indicating that a small subset of retinal ganglion cells in mammals is also intrinsically photosensitive. Melanopsin is the signaling photopigment in these cells. The main function of the inner-retina photoreceptors is to generate and transmit non-image-forming visual information, although some role in conventional vision (image detection) is also possible.
The Journal of Comparative Neurology | 2010
Luis Pérez De Sevilla Müller; Michael Tri H. Do; King Wai Yau; Shigang He; William H. Baldridge
Intrinsically photosensitive retinal ganglion cells (ipRGCs) are a subtype of ganglion cell in the mammalian retina that expresses the photopigment melanopsin and drives non‐image‐forming visual functions. Three morphological subtypes of ipRGCs (M1, M2, and M3) have been described based on their dendritic stratifications in the inner plexiform layer (IPL), but the question of their potential interactions via electrical coupling remains unsettled. In this study, we have addressed this question in the mouse retina by, injecting the tracer Neurobiotin into ipRGCs that had been genetically labelled with the fluorescent protein, tdTomato. We confirmed the presence of the M1–M3 subtypes of ipRGCs based on their distinct dendritic stratifications. All three subtypes were tracer coupled to putative amacrine cells situated within the ganglion cell layer (GCL) but not the inner nuclear layer (INL). The cells tracer coupled to the M1 and M2 cells were shown to be widefield GABA‐immunoreactive amacrine cells. We found no evidence of homologous tracer coupling of ipRGCs or heterologous coupling to other types of ganglion cells. J. Comp. Neurol. 518:4813–4824, 2010.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Michael Tri H. Do; King Wai Yau
Intrinsically photosensitive retinal ganglion cells (ipRGCs) are recently discovered photoreceptors in the mammalian eye. These photoreceptors mediate primarily nonimage visual functions, such as pupillary light reflex and circadian photoentrainment, which are generally expected to respond to the absolute light intensity. The classical rod and cone photoreceptors, on the other hand, mediate image vision by signaling contrast, accomplished by adaptation to light. Experiments by others have indicated that the ipRGCs do, in fact, light-adapt. We found the same but, in addition, have now quantified this light adaptation for the M1 ipRGC subtype. Interestingly, in incremental-flash-on-background experiments, the ipRGC’s receptor current showed a flash sensitivity that adapted in background light according to the Weber–Fechner relation, well known to describe the adaptation behavior of rods and cones. Part of this light adaptation by ipRGCs appeared to be triggered by a Ca2+ influx, in that the flash response elicited in the absence of extracellular Ca2+ showed a normal rising phase but a slower decay phase, resulting in longer time to peak and higher sensitivity. There is, additionally, a prominent Ca2+-independent component of light adaptation not typically seen in rods and cones or in invertebrate rhabdomeric photoreceptors.
Cell | 2017
Elliott Scott Milner; Michael Tri H. Do
Environmental illumination spans many log units of intensity and is tracked for essential functions that include regulation of the circadian clock, arousal state, and hormone levels. Little is known about the neural representation of light intensity and how it covers the necessary range. This question became accessible with the discovery of mammalian photoreceptors that are required for intensity-driven functions, the M1 ipRGCs. The spike outputs of M1s are thought to uniformly track intensity over a wide range. We provide a different understanding: individual cells operate over a narrow range, but the population covers irradiances from moonlight to full daylight. The range of most M1s is limited by depolarization block, which is generally considered pathological but is produced intrinsically by these cells. The dynamics of block allow the population to code stimulus intensity with flexibility and efficiency. Moreover, although spikes are distorted by block, they are regularized during axonal propagation.
Cell Reports | 2017
Alan Joseph Emanuel; Kush Kapur; Michael Tri H. Do
Intrinsically photosensitive retinal ganglion cells of the M1 type encode environmental irradiance for functions that include circadian and pupillary regulation. Their distinct role, morphology, and molecular markers indicate that they are stereotyped circuit elements, but their physiological uniformity has not been investigated in a systematic fashion. We have profiled the biophysical parameters of mouse M1s and found that extreme variation is their hallmark. Most parameters span 1-3 log units, and the full range is evident in M1s that innervate brain regions serving divergent functions. Biophysical profiles differ among cells possessing similar morphology and between neighboring M1s recorded simultaneously. Variation in each parameter is largely independent of that in others, allowing for flexible individualization. Accordingly, a common stimulus drives heterogeneous spike outputs across cells. By contrast, a population of directionally selective retinal ganglion cells appeared physiologically uniform under similar conditions. Thus, M1s lack biophysical constancy and send diverse signals downstream.
Cell | 2018
Michael Tri H. Do
Animal photoreceptors divide into two fundamental classes, ciliary and rhabdomeric. Jiang and colleagues demonstrate that this boundary is disregarded by the intrinsically photosensitive retinal ganglion cells of mammals. These neurons draw from phototransduction mechanisms of both classes, enriching the signals that they produce to drive a diversity of visual functions.