Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Vieweg is active.

Publication


Featured researches published by Michael Vieweg.


Journal of Geophysical Research | 2014

Hyporheic transport and biogeochemical reactions in pool‐riffle systems under varying ambient groundwater flow conditions

Nico Trauth; Christian Schmidt; Michael Vieweg; Uli Maier; Jan H. Fleckenstein

At the interface between stream water, groundwater, and the hyporheic zone (HZ), important biogeochemical processes that play a crucial role in fluvial ecology occur. Solutes that infiltrate into the HZ can react with each other and possibly also with upwelling solutes from the groundwater. In this study, we systematically evaluate how variations of gaining and losing conditions, stream discharge, and pool-riffle morphology affect aerobic respiration (AR) and denitrification (DN) in the HZ. For this purpose, a computational fluid dynamics model of stream water flow is coupled to a reactive transport model. Scenarios of variations of the solute concentration in the upwelling groundwater were conducted. Our results show that solute influx, residence time, and the size of reactive zones strongly depend on presence, magnitude, and direction of ambient groundwater flow. High magnitudes of ambient groundwater flow lower AR efficiency by up to 4 times and DN by up to 3 orders of magnitude, compared to neutral conditions. The influence of stream discharge and morphology on the efficiency of AR and DN are minor, in comparison to that of ambient groundwater flow. Different scenarios of O2 and NO3 concentrations in the upwelling groundwater reveal that DN efficiency of the HZ is highest under low upwelling magnitudes accompanied with low concentrations of O2 and NO3. Our results demonstrate how ambient groundwater flow influences solute transport, AR, and DN in the HZ. Neglecting groundwater flow in stream-groundwater interactions would lead to a significant overestimation of the efficiency of biogeochemical reactions in fluvial systems.


Water Resources Research | 2015

Hydraulic controls of in‐stream gravel bar hyporheic exchange and reactions

Nico Trauth; Christian Schmidt; Michael Vieweg; Sascha E. Oswald; Jan H. Fleckenstein

Hyporheic exchange transports solutes into the subsurface where they can undergo biogeochemical transformations, affecting fluvial water quality and ecology. A three-dimensional numerical model of a natural in-stream gravel bar (20 m × 6 m) is presented. Multiple steady state streamflow is simulated with a computational fluid dynamics code that is sequentially coupled to a reactive transport groundwater model via the hydraulic head distribution at the streambed. Ambient groundwater flow is considered by scenarios of neutral, gaining, and losing conditions. The transformation of oxygen, nitrate, and dissolved organic carbon by aerobic respiration and denitrification in the hyporheic zone are modeled, as is the denitrification of groundwater-borne nitrate when mixed with stream-sourced carbon. In contrast to fully submerged structures, hyporheic exchange flux decreases with increasing stream discharge, due to decreasing hydraulic head gradients across the partially submerged structure. Hyporheic residence time distributions are skewed in the log-space with medians of up to 8 h and shift to symmetric distributions with increasing level of submergence. Solute turnover is mainly controlled by residence times and the extent of the hyporheic exchange flow, which defines the potential reaction area. Although streamflow is the primary driver of hyporheic exchange, its impact on hyporheic exchange flux, residence times, and solute turnover is small, as these quantities exponentially decrease under losing and gaining conditions. Hence, highest reaction potential exists under neutral conditions, when the capacity for denitrification in the partially submerged structure can be orders of magnitude higher than in fully submerged structures.


Environmental Earth Sciences | 2017

The Bode hydrological observatory: a platform for integrated, interdisciplinary hydro-ecological research within the TERENO Harz/Central German Lowland Observatory

Ute Wollschläger; Sabine Attinger; Dietrich Borchardt; Mario Brauns; Matthias Cuntz; Peter Dietrich; Jan H. Fleckenstein; Kurt Friese; Jan Friesen; Alexander Harpke; Anke Hildebrandt; Greta Jäckel; Norbert Kamjunke; Kay Knöller; Simon Kögler; Olaf Kolditz; Ronald Krieg; Rohini Kumar; Angela Lausch; Matthias Liess; Andreas Marx; Ralf Merz; Christin Mueller; Andreas Musolff; Helge Norf; Sascha E. Oswald; Corinna Rebmann; Frido Reinstorf; Michael Rode; Karsten Rink

This article provides an overview about the Bode River catchment that was selected as the hydrological observatory and main region for hydro-ecological research within the TERrestrial ENvironmental Observatories Harz/Central German Lowland Observatory. It first provides information about the general characteristics of the catchment including climate, geology, soils, land use, water quality and aquatic ecology, followed by the description of the interdisciplinary research framework and the monitoring concept with the main components of the multi-scale and multi-temporal monitoring infrastructure. It also shows examples of interdisciplinary research projects aiming to advance the understanding of complex hydrological processes under natural and anthropogenic forcings and their interactions in a catchment context. The overview is complemented with research work conducted at a number of intensive research sites, each focusing on a particular functional zone or specific components and processes of the hydro-ecological system.


Water Resources Research | 2016

Stream solute tracer timescales changing with discharge and reach length confound process interpretation

Noah M. Schmadel; Adam S. Ward; Marie J. Kurz; Jan H. Fleckenstein; Jay P. Zarnetske; David M. Hannah; Theresa Blume; Michael Vieweg; Phillip J. Blaen; Christian Schmidt; Julia L. A. Knapp; Megan J. Klaar; Paul Romeijn; Thibault Datry; Toralf Keller; Silvia Folegot; Amaia I. Marruedo Arricibita; Stefan Krause

Improved understanding of stream solute transport requires meaningful comparison of processes across a wide range of discharge conditions and spatial scales. At reach scales where solute tracer tests are commonly used to assess transport behavior, such comparison is still confounded due to the challenge of separating dispersive and transient storage processes from the influence of the advective timescale that varies with discharge and reach length. To better resolve interpretation of these processes from field-based tracer observations, we conducted recurrent conservative solute tracer tests along a 1 km study reach during a storm discharge period and further discretized the study reach into six segments of similar length but different channel morphologies. The resulting suite of data, spanning an order of magnitude in advective timescales, enabled us to (1) characterize relationships between tracer response and discharge in individual segments and (2) determine how combining the segments into longer reaches influences interpretation of dispersion and transient storage from tracer tests. We found that the advective timescale was the primary control on the shape of the observed tracer response. Most segments responded similarly to discharge, implying that the influence of morphologic heterogeneity was muted relative to advection. Comparison of tracer data across combined segments demonstrated that increased advective timescales could be misinterpreted as a change in dispersion or transient storage. Taken together, our results stress the importance of characterizing the influence of changing advective timescales on solute tracer responses before such reach-scale observations can be used to infer solute transport at larger network scales.


Environmental Science & Technology | 2013

Robust Optode-Based Method for Measuring in Situ Oxygen Profiles in Gravelly Streambeds

Michael Vieweg; Nico Trauth; Jan H. Fleckenstein; Christian Schmidt

One of the key environmental conditions controlling biogeochemical reactions in aquatic sediments like streambeds is the distribution of dissolved oxygen. We present a novel approach for the in situ measurement of vertical oxygen profiles using a planar luminescence-based optical sensor. The instrument consists of a transparent acrylic tube with the oxygen-sensitive layer mounted on the outside. The luminescence is excited and detected by a moveable piston inside the acrylic tube. Since no moving parts are in contact with the streambed, the disturbance of the subsurface flow field is minimized. The precision of the distributed oxygen sensor (DOS) was assessed by a comparison with spot optodes. Although the precision of the DOS, expressed as standard deviation of calculated oxygen air saturation, is lower (0.2-6.2%) compared to spot optodes (<0.1-0.6%), variations of the oxygen content along the profile can be resolved. The uncertainty of the calculated oxygen is assessed with a Monte Carlo uncertainty assessment. The obtained vertical oxygen profiles of 40 cm in length reveal variations of the oxygen content reaching from 90% to 0% air saturation and are characterized by patches of low oxygen rather than a continuous decrease with depth.


Journal of Geophysical Research | 2016

Estimating time‐variable aerobic respiration in the streambed by combining electrical conductivity and dissolved oxygen time series

Michael Vieweg; Marie J. Kurz; Nico Trauth; Jan H. Fleckenstein; Andreas Musolff; Christian Schmidt

Aerobic respiration is an important component of in-stream metabolism. The larger part occurs in the streambed, where it is difficult to directly determine actual respiration rates. Existing methods for determining respiration are based on indirect estimates from whole-stream metabolism or provide time invariant results estimated from oxygen consumption measurements in enclosed chambers that do not account for the influence of hydrological changes. In this study we demonstrate a simple method for determining time-variable hyporheic respiration. We use a windowed cross-correlation approach for deriving time-variable travel times from the naturally changing electrical conductivity signal that is transferred into the sediment. By combining the results with continuous in situ dissolved oxygen measurements, variable oxygen consumption rate coefficients in the streambed are obtained. An empirical temperature relationship is derived and used for standardizing the respiration rate coefficients to isothermal conditions. For demonstrating the method, we compare two independent measurement spots in the streambed, which were located upstream and downstream of an in-stream gravel bar and thus exposed strongly diverse travel times. The derived respiration rate results are in accordance with findings of other stream studies. By comparing the travel time and respiration rate coefficient (i.e., Damkohler number) we estimate the contribution of each to the oxygen consumption in the streambed.


Water Resources Research | 2013

Coupled 3‐D stream flow and hyporheic flow model under varying stream and ambient groundwater flow conditions in a pool‐riffle system

Nico Trauth; Christian Schmidt; Uli Maier; Michael Vieweg; Jan H. Fleckenstein


Hydrology and Earth System Sciences | 2012

Transient analysis of fluctuations of electrical conductivity as tracer in the stream bed

Christian Schmidt; Andreas Musolff; Nico Trauth; Michael Vieweg; Jan H. Fleckenstein


Journal of Geophysical Research | 2016

Estimating time-variable aerobic respiration in the streambed by combining electrical conductivity and dissolved oxygen time series: Variable Respiration in the Streambed

Michael Vieweg; Marie J. Kurz; Nico Trauth; Jan H. Fleckenstein; Andreas Musolff; Christian Schmidt


Environmental Science & Technology | 2017

Automated in Situ Oxygen Profiling at Aquatic–Terrestrial Interfaces

Tanja Brandt; Michael Vieweg; Gerrit Laube; Robert Schima; Tobias Goblirsch; Jan H. Fleckenstein; Christian Schmidt

Collaboration


Dive into the Michael Vieweg's collaboration.

Top Co-Authors

Avatar

Christian Schmidt

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Top Co-Authors

Avatar

Jan H. Fleckenstein

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Top Co-Authors

Avatar

Nico Trauth

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Top Co-Authors

Avatar

Andreas Musolff

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Top Co-Authors

Avatar

Marie J. Kurz

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Toralf Keller

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Researchain Logo
Decentralizing Knowledge