Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael W. Jenkins is active.

Publication


Featured researches published by Michael W. Jenkins.


Optics Express | 2007

Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered Fourier Domain Mode Locked laser

Michael W. Jenkins; Desmond C. Adler; Madhusudhana Gargesha; Robert Huber; Florence Rothenberg; J. Belding; Michiko Watanabe; David L. Wilson; James G. Fujimoto; Andrew M. Rollins

The embryonic avian heart is an important model for studying cardiac developmental biology. The mechanisms that govern the development of a four-chambered heart from a peristaltic heart tube are largely unknown due in part to a lack of adequate imaging technology. Due to the small size and rapid motion of the living embryonic avian heart, an imaging system with high spatial and temporal resolution is required to study these models. Here, an optical coherence tomography (OCT) system using a buffered Fourier Domain Mode Locked (FDML) laser is applied for ultrahigh-speed non-invasive imaging of embryonic quail hearts at 100,000 axial scans per second. The high scan rate enables the acquisition of high temporal resolution 2D datasets (195 frames per second or 5.12 ms between frames) and 3D datasets (10 volumes per second). Spatio-temporal details of cardiac motion not resolvable using previous OCT technology are analyzed. Visualization and measurement techniques are developed to non-invasively observe and quantify cardiac motion throughout the brief period of systole (less than 50 msec) and diastole. This marks the first time that the preseptated embryonic avian heart has been imaged in 4D without the aid of gating and the first time it has been viewed in cross section during looping with extremely high temporal resolution, enabling the observation of morphological dynamics of the beating heart during systole.


Optics Express | 2006

4D embryonic cardiography using gated optical coherence tomography

Michael W. Jenkins; Florence Rothenberg; Debashish Roy; Vladimir P. Nikolski; Zhilin Hu; Michiko Watanabe; David L. Wilson; Igor R. Efimov; Andrew M. Rollins

Simultaneous imaging of very early embryonic heart structure and function has technical limitations of spatial and temporal resolution. We have developed a gated technique using optical coherence tomography (OCT) that can rapidly image beating embryonic hearts in four-dimensions (4D), at high spatial resolution (10-15 mum), and with a depth penetration of 1.5 - 2.0 mm that is suitable for the study of early embryonic hearts. We acquired data from paced, excised, embryonic chicken and mouse hearts using gated sampling and employed image processing techniques to visualize the hearts in 4D and measure physiologic parameters such as cardiac volume, ejection fraction, and wall thickness. This technique is being developed to longitudinally investigate the physiology of intact embryonic hearts and events that lead to congenital heart defects.


Nature Photonics | 2010

Optical Pacing of the Embryonic Heart

Michael W. Jenkins; Austin R. Duke; Shi Gu; Yong Qiu Doughman; Hillel J. Chiel; H. Fujioka; M. Watanabe; E. D. Jansen; Andrew M. Rollins

Light has been used to noninvasively alter the excitability of both neural and cardiac tissue 1–10. Recently, pulsed laser light has been shown to be capable of eliciting action potentials in peripheral nerves and in cultured cardiomyocytes 7–10. Here, we demonstrate for the first time optical pacing (OP) of an intact heart in vivo. Pulsed 1.875 μm infrared laser light was employed to lock the heart rate to the pulse frequency of the laser. A laser Doppler velocimetry (LDV) signal was used to verify the pacing. At low radiant exposures, embryonic quail hearts were reliably paced in vivo without detectable damage to the tissue, indicating that OP has great potential as a tool to study embryonic cardiac dynamics and development. In particular, OP can be utilized to control the heart rate, and thereby alter stresses and mechanically transduced signaling.


Journal of Biomedical Optics | 2007

In vivo gated 4D imaging of the embryonic heart using optical coherence tomography

Michael W. Jenkins; Osman Chughtai; Ajay Basavanhally; Michiko Watanabe; Andrew M. Rollins

We demonstrate the first in vivo gated 4D images of avian embryonic hearts by use of optical coherence tomography (OCT). We present a gated 4D dataset of an in vivo beating quail heart consisting of approximately 864,000 A-scans accumulated over multiple heartbeats. Generation of a gating trigger from a laser Doppler velocimetry (LDV) signal, collected from an outlying vitelline vessel, enabled us to gate image acquisition to the cardiac cycle. To fully characterize the genesis and mechanisms of cardiac defects, a tool capable of assessing structure and function simultaneously at early stages of development is needed, and gated OCT has the capability to become such a tool.


Optics Express | 2009

High temporal resolution OCT using image-based retrospective gating

Madhusudhana Gargesha; Michael W. Jenkins; David L. Wilson; Andrew M. Rollins

High temporal resolution OCT imaging is very advantageous for analyzing cardiac mechanics in the developing embryonic heart of small animals. An image-based retrospective gating technique is presented to increase the effective temporal resolution of an OCT system and to allow visualization of systolic dynamics in 3D. The gating technique employs image similarity measures for rearranging asynchronously acquired input data consisting of a time series of 2D images at each z position along the heart volume, to produce a time sequence of 3D volumes of the beating heart. The study includes a novel robust validation technique, which quantitatively evaluates the accuracy of the gating technique, in addition to visual evaluations by 2D multiplanar reformatting (MPR) and 3D volume rendering. The retrospective gating and validation is demonstrated on a stage 14 embryonic quail heart data set. Using the validation scheme, it is shown that the gating is accurate within a standard deviation of 4.7 ms, which is an order of magnitude shorter than the time interval during which systolic contraction (approximately 50 ms) occurs in the developing embryo. This gating method has allowed, for the first time, clear visualization of systolic dynamics of the looping embryonic heart in 3D.


Optics Express | 2008

Denoising and 4D visualization of OCT images

Madhusudhana Gargesha; Michael W. Jenkins; Andrew M. Rollins; David L. Wilson

We are using Optical Coherence Tomography (OCT) to image structure and function of the developing embryonic heart in avian models. Fast OCT imaging produces very large 3D (2D + time) and 4D (3D volumes + time) data sets, which greatly challenge ones ability to visualize results. Noise in OCT images poses additional challenges. We created an algorithm with a quick, data set specific optimization for reduction of both shot and speckle noise and applied it to 3D visualization and image segmentation in OCT. When compared to baseline algorithms (median, Wiener, orthogonal wavelet, basic non-orthogonal wavelet), a panel of experts judged the new algorithm to give much improved volume renderings concerning both noise and 3D visualization. Specifically, the algorithm provided a better visualization of the myocardial and endocardial surfaces, and the interaction of the embryonic heart tube with surrounding tissue. Quantitative evaluation using an image quality figure of merit also indicated superiority of th new algorithm. Noise reduction aided semi-automatic 2D image segmentation, as quantitatively evaluated using a contour distance measure with respect to an expert segmented contour. In conclusion, the noise reduction algorithm should be quite useful for visualization and quantitative measurements (e.g., heart volume, stroke volume, contraction velocity, etc.) in OCT embryo images. With its semi-automatic, data set specific optimization, we believe that the algorithm can be applied to OCT images from other applications.


Scientific Reports | 2013

Transient and selective suppression of neural activity with infrared light

Austin R. Duke; Michael W. Jenkins; Hui Lu; Jeffrey M. McManus; Hillel J. Chiel; E. Duco Jansen

Analysis and control of neural circuitry requires the ability to selectively activate or inhibit neurons. Previous work showed that infrared laser light selectively excited neural activity in endogenous unmyelinated and myelinated axons. However, inhibition of neuronal firing with infrared light was only observed in limited cases, is not well understood and was not precisely controlled. Using an experimentally tractable unmyelinated preparation for detailed investigation and a myelinated preparation for validation, we report that it is possible to selectively and transiently inhibit electrically-initiated axonal activation, as well as to both block or enhance the propagation of action potentials of specific motor neurons. Thus, in addition to previously shown excitation, we demonstrate an optical method of suppressing components of the nervous system with functional spatiotemporal precision. We believe this technique is well-suited for non-invasive investigations of diverse excitable tissues and may ultimately be applied for treating neurological disorders.


American Journal of Physiology-heart and Circulatory Physiology | 2011

Blood Flow Dynamics of One Cardiac Cycle and Relationship to Mechanotransduction and Trabeculation during Heart Looping

Barbara Garita; Michael W. Jenkins; Mingda Han; Chao Zhou; Michael VanAuker; Andrew M. Rollins; Michiko Watanabe; James G. Fujimoto; Kersti K. Linask

Analyses of form-function relationships during heart looping are directly related to technological advances. Recent advances in four-dimensional optical coherence tomography (OCT) permit observations of cardiac dynamics at high-speed acquisition rates and high resolution. Real-time observation of the avian stage 13 looping heart reveals that interactions between the endocardial and myocardial compartments are more complex than previously depicted. Here we applied four-dimensional OCT to elucidate the relationships of the endocardium, myocardium, and cardiac jelly compartments in a single cardiac cycle during looping. Six cardiac levels along the longitudinal heart tube were each analyzed at 15 time points from diastole to systole. Using image analyses, the organization of mechanotransducing molecules, fibronectin, tenascin C, α-tubulin, and nonmuscle myosin II was correlated with specific cardiac regions defined by OCT data. Optical coherence microscopy helped to visualize details of cardiac architectural development in the embryonic mouse heart. Throughout the cardiac cycle, the endocardium was consistently oriented between the midline of the ventral floor of the foregut and the outer curvature of the myocardial wall, with multiple endocardial folds allowing high-volume capacities during filling. The cardiac area fractional shortening is much higher than previously published. The in vivo profile captured by OCT revealed an interaction of the looping heart with the extra-embryonic splanchnopleural membrane providing outside-in information. In summary, the combined dynamic and imaging data show the developing structural capacity to accommodate increasing flow and the mechanotransducing networks that organize to effectively facilitate formation of the trabeculated four-chambered heart.


Journal of Biomedical Optics | 2010

Measuring hemodynamics in the developing heart tube with four-dimensional gated Doppler optical coherence tomography

Michael W. Jenkins; Lindsy M. Peterson; Shi Gu; Madhusudhana Gargesha; David L. Wilson; Michiko Watanabe; Andrew M. Rollins

Hemodynamics is thought to play a major role in heart development, yet tools to quantitatively assess hemodynamics in the embryo are sorely lacking. The especially challenging analysis of hemodynamics in the early embryo requires new technology. Small changes in blood flow could indicate when anomalies are initiated even before structural changes can be detected. Furthermore, small changes in the early embryo that affect blood flow could lead to profound abnormalities at later stages. We present a demonstration of 4-D Doppler optical coherence tomography (OCT) imaging of structure and flow, and present several new hemodynamic measurements on embryonic avian hearts at early stages prior to the formation of the four chambers. Using 4-D data, pulsed Doppler measurements could accurately be attained in the inflow and outflow of the heart tube. Also, by employing an en-face slice from the 4-D Doppler image set, measurements of stroke volume and cardiac output are obtained without the need to determine absolute velocity. Finally, an image plane orthogonal to the blood flow is used to determine shear stress by calculating the velocity gradient normal to the endocardium. Hemodynamic measurements will be crucial to identifying genetic and environmental factors that lead to congenital heart defects.


American Journal of Physiology-heart and Circulatory Physiology | 2014

Ethanol exposure alters early cardiac function in the looping heart: a mechanism for congenital heart defects?

Ganga Karunamuni; Shi Gu; Yong Qiu Doughman; Lindsy M. Peterson; Katherine Mai; Quinn McHale; Michael W. Jenkins; Kersti K. Linask; Andrew M. Rollins; Michiko Watanabe

Alcohol-induced congenital heart defects are frequently among the most life threatening and require surgical correction in newborns. The etiology of these defects, collectively known as fetal alcohol syndrome, has been the focus of much study, particularly involving cellular and molecular mechanisms. Few studies have addressed the influential role of altered cardiac function in early embryogenesis because of a lack of tools with the capability to assay tiny beating hearts. To overcome this gap in our understanding, we used optical coherence tomography (OCT), a nondestructive imaging modality capable of micrometer-scale resolution imaging, to rapidly and accurately map cardiovascular structure and hemodynamics in real time under physiological conditions. In this study, we exposed avian embryos to a single dose of alcohol/ethanol at gastrulation when the embryo is sensitive to the induction of birth defects. Late-stage hearts were analyzed using standard histological analysis with a focus on the atrio-ventricular valves. Early cardiac function was assayed using Doppler OCT, and structural analysis of the cardiac cushions was performed using OCT imaging. Our results indicated that ethanol-exposed embryos developed late-stage valvuloseptal defects. At early stages, they exhibited increased regurgitant flow and developed smaller atrio-ventricular cardiac cushions, compared with controls (uninjected and saline-injected embryos). The embryos also exhibited abnormal flexion/torsion of the body. Our evidence suggests that ethanol-induced alterations in early cardiac function have the potential to contribute to late-stage valve and septal defects, thus demonstrating that functional parameters may serve as early and sensitive gauges of cardiac normalcy and abnormalities.

Collaboration


Dive into the Michael W. Jenkins's collaboration.

Top Co-Authors

Avatar

Andrew M. Rollins

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Shi Gu

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Michiko Watanabe

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Yves T. Wang

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Ganga Karunamuni

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Lindsy M. Peterson

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Pei Ma

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Yong Qiu Doughman

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Hillel J. Chiel

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

David L. Wilson

Case Western Reserve University

View shared research outputs
Researchain Logo
Decentralizing Knowledge