Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shi Gu is active.

Publication


Featured researches published by Shi Gu.


Nature Communications | 2015

Controllability of structural brain networks

Shi Gu; Fabio Pasqualetti; Matthew Cieslak; Qawi K. Telesford; Alfred B. Yu; Ari E. Kahn; John D. Medaglia; Jean M. Vettel; Michael B. Miller; Scott T. Grafton; Danielle S. Bassett

Cognitive function is driven by dynamic interactions between large-scale neural circuits or networks, enabling behaviour. However, fundamental principles constraining these dynamic network processes have remained elusive. Here we use tools from control and network theories to offer a mechanistic explanation for how the brain moves between cognitive states drawn from the network organization of white matter microstructure. Our results suggest that densely connected areas, particularly in the default mode system, facilitate the movement of the brain to many easily reachable states. Weakly connected areas, particularly in cognitive control systems, facilitate the movement of the brain to difficult-to-reach states. Areas located on the boundary between network communities, particularly in attentional control systems, facilitate the integration or segregation of diverse cognitive systems. Our results suggest that structural network differences between cognitive circuits dictate their distinct roles in controlling trajectories of brain network function.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Emergence of system roles in normative neurodevelopment

Shi Gu; Theodore D. Satterthwaite; John D. Medaglia; Muzhi Yang; Raquel E. Gur; Ruben C. Gur; Danielle S. Bassett

Significance The human brain is a complex system displaying intricate, dynamic functions. In a multidisciplinary effort, the recent application of tools from network science to characterize the interconnected nature of the brain has enabled a tremendous advance in our understanding of cognition. Here, we develop and apply an extension of these tools to define and characterize the role of cognitive systems in the larger scale brain network, and to map how these roles change during adolescent development, providing an important context for understanding psychopathology. Our results are also consistent with the hypothesis that individual variation in network configuration implies differential vulnerability to cognitive abilities or deficits. Adult human cognition is supported by systems of brain regions, or modules, that are functionally coherent at rest and collectively activated by distinct task requirements. However, an understanding of how the formation of these modules supports evolving cognitive capabilities has not been delineated. Here, we quantify the formation of network modules in a sample of 780 youth (aged 8–22 y) who were studied as part of the Philadelphia Neurodevelopmental Cohort. We demonstrate that the brain’s functional network organization changes in youth through a process of modular evolution that is governed by the specific cognitive roles of each system, as defined by the balance of within- vs. between-module connectivity. Moreover, individual variability in these roles is correlated with cognitive performance. Collectively, these results suggest that dynamic maturation of network modules in youth may be a critical driver for the development of cognition.


Scientific Reports | 2016

Optimally controlling the human connectome: the role of network topology

Richard F. Betzel; Shi Gu; John D. Medaglia; Fabio Pasqualetti; Danielle S. Bassett

To meet ongoing cognitive demands, the human brain must seamlessly transition from one brain state to another, in the process drawing on different cognitive systems. How does the brain’s network of anatomical connections help facilitate such transitions? Which features of this network contribute to making one transition easy and another transition difficult? Here, we address these questions using network control theory. We calculate the optimal input signals to drive the brain to and from states dominated by different cognitive systems. The input signals allow us to assess the contributions made by different brain regions. We show that such contributions, which we measure as energy, are correlated with regions’ weighted degrees. We also show that the network communicability, a measure of direct and indirect connectedness between brain regions, predicts the extent to which brain regions compensate when input to another region is suppressed. Finally, we identify optimal states in which the brain should start (and finish) in order to minimize transition energy. We show that the optimal target states display high activity in hub regions, implicating the brain’s rich club. Furthermore, when rich club organization is destroyed, the energy cost associated with state transitions increases significantly, demonstrating that it is the richness of brain regions that makes them ideal targets.


PLOS Computational Biology | 2016

Stimulation-Based Control of Dynamic Brain Networks

Sarah Feldt Muldoon; Fabio Pasqualetti; Shi Gu; Matthew Cieslak; Scott T. Grafton; Jean M. Vettel; Danielle S. Bassett

The ability to modulate brain states using targeted stimulation is increasingly being employed to treat neurological disorders and to enhance human performance. Despite the growing interest in brain stimulation as a form of neuromodulation, much remains unknown about the network-level impact of these focal perturbations. To study the system wide impact of regional stimulation, we employ a data-driven computational model of nonlinear brain dynamics to systematically explore the effects of targeted stimulation. Validating predictions from network control theory, we uncover the relationship between regional controllability and the focal versus global impact of stimulation, and we relate these findings to differences in the underlying network architecture. Finally, by mapping brain regions to cognitive systems, we observe that the default mode system imparts large global change despite being highly constrained by structural connectivity. This work forms an important step towards the development of personalized stimulation protocols for medical treatment or performance enhancement.


NeuroImage | 2017

Optimal trajectories of brain state transitions

Shi Gu; Richard F. Betzel; Marcelo G. Mattar; Matthew Cieslak; Philip R. Delio; Scott T. Grafton; Fabio Pasqualetti; Danielle S. Bassett

Abstract The complexity of neural dynamics stems in part from the complexity of the underlying anatomy. Yet how white matter structure constrains how the brain transitions from one cognitive state to another remains unknown. Here we address this question by drawing on recent advances in network control theory to model the underlying mechanisms of brain state transitions as elicited by the collective control of region sets. We find that previously identified attention and executive control systems are poised to affect a broad array of state transitions that cannot easily be classified by traditional engineering‐based notions of control. This theoretical versatility comes with a vulnerability to injury. In patients with mild traumatic brain injury, we observe a loss of specificity in putative control processes, suggesting greater susceptibility to neurophysiological noise. These results offer fundamental insights into the mechanisms driving brain state transitions in healthy cognition and their alteration following injury. HighlightsWe use network control theory to model mechanisms of brain state transitions.Attention and executive areas are poised to affect an array of state transitions.Patients with mild traumatic injury display less specificity in control processes.


Nature Communications | 2017

Developmental increases in white matter network controllability support a growing diversity of brain dynamics

Evelyn Tang; Chad Giusti; Graham L. Baum; Shi Gu; Eli Pollock; Ari E. Kahn; David R. Roalf; Tyler M. Moore; Kosha Ruparel; Ruben C. Gur; Raquel E. Gur; Theodore D. Satterthwaite; Danielle S. Bassett

Evelyn Tang, Chad Giusti, Graham Baum, Shi Gu, Ari E. Kahn, David Roalf, Tyler M. Moore, Kosha Ruparel, Ruben C. Gur, Raquel E. Gur, Theodore D. Satterthwaite, 3 and Danielle S. Bassett 4, 3 Department of Bioengineering, University of Pennsylvania, PA 19104 Brain Behavior Laboratory, Department of Psychiatry, University of Pennsylvania, PA 19104 These authors contributed equally. Department of Electrical and Systems Engineering, University of Pennsylvania, PA 19104 (Dated: May, 2016)As the human brain develops, it increasingly supports coordinated control of neural activity. The mechanism by which white matter evolves to support this coordination is not well understood. Here we use a network representation of diffusion imaging data from 882 youth ages 8–22 to show that white matter connectivity becomes increasingly optimized for a diverse range of predicted dynamics in development. Notably, stable controllers in subcortical areas are negatively related to cognitive performance. Investigating structural mechanisms supporting these changes, we simulate network evolution with a set of growth rules. We find that all brain networks are structured in a manner highly optimized for network control, with distinct control mechanisms predicted in child vs. older youth. We demonstrate that our results cannot be explained by changes in network modularity. This work reveals a possible mechanism of human brain development that preferentially optimizes dynamic network control over static network architecture.Human brain development is characterized by an increased control of neural activity, but how this happens is not well understood. Here, authors show that white matter connectivity in 882 youth, aged 8-22, becomes increasingly specialized locally and is optimized for network control.


Scientific Reports | 2017

Autaptic Connections Shift Network Excitability and Bursting

Laura Wiles; Shi Gu; Fabio Pasqualetti; Brandon Parvesse; David Gabrieli; Danielle S. Bassett; David F. Meaney

We examine the role of structural autapses, when a neuron synapses onto itself, in driving network-wide bursting behavior. Using a simple spiking model of neuronal activity, we study how autaptic connections affect activity patterns, and evaluate if controllability significantly affects changes in bursting from autaptic connections. Adding more autaptic connections to excitatory neurons increased the number of spiking events and the number of network-wide bursts. We observed excitatory synapses contributed more to bursting behavior than inhibitory synapses. We evaluated if neurons with high average controllability, predicted to push the network into easily achievable states, affected bursting behavior differently than neurons with high modal controllability, thought to influence the network into difficult to reach states. Results show autaptic connections to excitatory neurons with high average controllability led to higher burst frequencies than adding the same number of self-looping connections to neurons with high modal controllability. The number of autapses required to induce bursting was lowered by adding autapses to high degree excitatory neurons. These results suggest a role of autaptic connections in controlling network-wide bursts in diverse cortical and subcortical regions of mammalian brain. Moreover, they open up new avenues for the study of dynamic neurophysiological correlates of structural controllability.


Nature Methods | 2018

Detecting hierarchical genome folding with network modularity

Heidi K. Norton; Daniel J Emerson; Harvey Huang; Jesi Kim; Katelyn R. Titus; Shi Gu; Danielle S. Bassett; Jennifer E. Phillips-Cremins

Mammalian genomes are folded in a hierarchy of compartments, topologically associating domains (TADs), subTADs and looping interactions. Here, we describe 3DNetMod, a graph theory-based method for sensitive and accurate detection of chromatin domains across length scales in Hi-C data. We identify nested, partially overlapping TADs and subTADs genome wide by optimizing network modularity and varying a single resolution parameter. 3DNetMod can be applied broadly to understand genome reconfiguration in development and disease.


Journal of Nonlinear Science | 2018

Benchmarking Measures of Network Controllability on Canonical Graph Models

Elena Wu-Yan; Richard F. Betzel; Evelyn Tang; Shi Gu; Fabio Pasqualetti; Danielle S. Bassett

The control of networked dynamical systems opens the possibility for new discoveries and therapies in systems biology and neuroscience. Recent theoretical advances provide candidate mechanisms by which a system can be driven from one pre-specified state to another, and computational approaches provide tools to test those mechanisms in real-world systems. Despite already having been applied to study network systems in biology and neuroscience, the practical performance of these tools and associated measures on simple networks with pre-specified structure has yet to be assessed. Here, we study the behavior of four control metrics (global, average, modal, and boundary controllability) on eight canonical graphs (including Erdős–Rényi, regular, small-world, random geometric, Barábasi–Albert preferential attachment, and several modular networks) with different edge weighting schemes (Gaussian, power-law, and two nonparametric distributions from brain networks, as examples of real-world systems). We observe that differences in global controllability across graph models are more salient when edge weight distributions are heavy-tailed as opposed to normal. In contrast, differences in average, modal, and boundary controllability across graph models (as well as across nodes in the graph) are more salient when edge weight distributions are less heavy-tailed. Across graph models and edge weighting schemes, average and modal controllability are negatively correlated with one another across nodes; yet, across graph instances, the relation between average and modal controllability can be positive, negative, or nonsignificant. Collectively, these findings demonstrate that controllability statistics (and their relations) differ across graphs with different topologies and that these differences can be muted or accentuated by differences in the edge weight distributions. More generally, our numerical studies motivate future analytical efforts to better understand the mathematical underpinnings of the relationship between graph topology and control, as well as efforts to design networks with specific control profiles.


Scientific Reports | 2018

The Energy Landscape of Neurophysiological Activity Implicit in Brain Network Structure

Shi Gu; Matthew Cieslak; Benjamin Baird; Sarah Feldt Muldoon; Scott T. Grafton; Fabio Pasqualetti; Danielle S. Bassett

A critical mystery in neuroscience lies in determining how anatomical structure impacts the complex functional dynamics of the brain. How does large-scale brain circuitry constrain states of neuronal activity and transitions between those states? We address these questions using a maximum entropy model of brain dynamics informed by white matter tractography. We demonstrate that the most probable brain states – characterized by minimal energy – display common activation profiles across brain areas: local spatially-contiguous sets of brain regions reminiscent of cognitive systems are co-activated frequently. The predicted activation rate of these systems is highly correlated with the observed activation rate measured in a separate resting state fMRI data set, validating the utility of the maximum entropy model in describing neurophysiological dynamics. This approach also offers a formal notion of the energy of activity within a system, and the energy of activity shared between systems. We observe that within- and between-system energies cleanly separate cognitive systems into distinct categories, optimized for differential contributions to integrated versus segregated function. These results support the notion that energetic and structural constraints circumscribe brain dynamics, offering insights into the roles that cognitive systems play in driving whole-brain activation patterns.

Collaboration


Dive into the Shi Gu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Raquel E. Gur

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Ruben C. Gur

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

David R. Roalf

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Kosha Ruparel

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Tyler M. Moore

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ari E. Kahn

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge