Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael W. Mara is active.

Publication


Featured researches published by Michael W. Mara.


Journal of Shoulder and Elbow Surgery | 2003

The proximal ulna: an anatomic study with relevance to olecranon osteotomy and fracture fixation

Angela A. Wang; Michael W. Mara; Douglas T. Hutchinson

The purpose of this study was to define the proximal ulna anatomy with respect to olecranon osteotomy and fracture fixation. Thirty-nine cadaver elbows were dissected. The mean ulnar length (triceps insertion to ulnar styloid) was 26.0 cm (range, 27.1-29.0 cm). The mean distance from the triceps insertion to the ulnas varus angulation point was 7.6 cm (range, 6.5-9.0 cm). The distance ratio from the triceps insertion to the proximal ulnar angle to the overall ulna length was consistent, averaging 0.29 (range, 0.23-0.33). The mean diameter of the medullary canal at the ulnar angulation point could accommodate a 7.0- or 7.3-mm intramedullary screw. The mean width of the olecranon bare area (lacking articular cartilage) was 0.53 cm (range, 0.13-0.97 cm), and the mean distance from the triceps insertion to the corresponding area of the bare spot on the dorsal cortex was 2.1 cm (range, 1.4-2.5 cm).


Journal of Physical Chemistry A | 2012

Strong steric hindrance effect on excited state structural dynamics of Cu(I) diimine complexes

Nosheen A. Gothard; Michael W. Mara; Jier Huang; Jodi M. Szarko; Brian S. Rolczynski; Jenny V. Lockard; Lin X. Chen

The metal-to-ligand-charge-transfer (MLCT) excited state of Cu(I) diimine complexes is known to undergo structural reorganization, transforming from a pseudotetrahedral D(2d) symmetry in the ground state to a flattened D(2) symmetry in the MLCT state, which allows ligation with a solvent molecule, forming an exciplex intermediate. Therefore, the structural factors that influence the coordination geometry change and the solvent accessibility to the copper center in the MLCT state could be used to control the excited state properties. In this study, we investigated an extreme case of the steric hindrance caused by attaching bulky tert-butyl groups in bis(2,9-di-tert-butyl-1,10-phenanthroline)copper(I), [Cu(I)(dtbp)(2)](+). The two bulky tert-butyl groups on the dtbp ligand lock the MLCT state into the pseudotetrahedral coordination geometry and completely block the solvent access to the copper center in the MLCT state of [Cu(I)(dtbp)(2)](+). Using ultrafast transient absorption spectroscopy and time-resolved emission spectroscopy, we investigated the MLCT state property changes due to the steric hindrance and demonstrated that [Cu(I)(dtbp)(2)](+) exhibited a long-lived emission but no subpicosecond component that was previously assigned as the flattening of the pseudotetrahedral coordination geometry. This suggests the retention of its pseudotetrahedral D(2d) symmetry and the blockage of the solvent accessibility. We made a comparison between the excited state dynamics of [Cu(I)(dtbp)(2)](+) with its mono-tert-butyl counterpart, bis(2-tert-butyl-1,10-phenanthroline)copper(I) [Cu(I)(tbp)(2)](+). The subpicosecond component assigned to the flattening of the D(2d) coordination geometry in the MLCT excited state was again present in the latter because the absence of a tert-butyl on the phenanthroline allows flattening to the pseudotetrahedral coordination geometry. Unlike the [Cu(I)(dtbp)(2)](+), [Cu(I)(tbp)(2)](+) exhibited no detectable emission at room temperature in solution. These results provide new insights into the manipulation of various excited state properties in Cu diimine complexes by certain key structural factors, enabling optimization of these systems for solar energy conversion applications.


Inorganic Chemistry | 2013

Characterization of an amorphous iridium water-oxidation catalyst electrodeposited from organometallic precursors

James D. Blakemore; Michael W. Mara; Maxwell N. Kushner-Lenhoff; Nathan D. Schley; Steven J. Konezny; Ivan Rivalta; Christian F. A. Negre; Robert C. Snoeberger; Oleksandr Kokhan; Jier Huang; Andrew B. Stickrath; Lan Anh Tran; Maria L. Parr; Lin X. Chen; David M. Tiede; Victor S. Batista; Robert H. Crabtree; Gary W. Brudvig

Upon electrochemical oxidation of the precursor complexes [Cp*Ir(H(2)O)(3)]SO(4) (1) or [(Cp*Ir)(2)(OH)(3)]OH (2) (Cp* = pentamethylcyclopentadienyl), a blue layer of amorphous iridium oxide containing a carbon admixture (BL) is deposited onto the anode. The solid-state, amorphous iridium oxide material that is formed from the molecular precursors is significantly more active for water-oxidation catalysis than crystalline IrO(2) and functions as a remarkably robust catalyst, capable of catalyzing water oxidation without deactivation or significant corrosion for at least 70 h. Elemental analysis reveals that BL contains carbon that is derived from the Cp* ligand (∼ 3% by mass after prolonged electrolysis). Because the electrodeposition of precursors 1 or 2 gives a highly active catalyst material, and electrochemical oxidation of other iridium complexes seems not to result in immediate conversion to iridium oxide materials, we investigate here the nature of the deposited material. The steps leading to the formation of BL and its structure have been investigated by a combination of spectroscopic and theoretical methods. IR spectroscopy shows that the carbon content of BL, while containing some C-H bonds intact at short times, is composed primarily of components with C═O fragments at longer times. X-ray absorption and X-ray absorption fine structure show that, on average, the six ligands to iridium in BL are likely oxygen atoms, consistent with formation of iridium oxide under the oxidizing conditions. High-energy X-ray scattering (HEXS) and pair distribution function (PDF) analysis (obtained ex situ on powder samples) show that BL is largely free of the molecular precursors and is composed of small, <7 Å, iridium oxide domains. Density functional theory (DFT) modeling of the X-ray data suggests a limited set of final components in BL; ketomalonate has been chosen as a model fragment because it gives a good fit to the HEXS-PDF data and is a potential decomposition product of Cp*.


Inorganic Chemistry | 2014

Cobaloxime-Based Artificial Hydrogenases

Marine Bacchi; Gustav Berggren; Jens Niklas; Elias Veinberg; Michael W. Mara; Megan L. Shelby; Oleg G. Poluektov; Lin X. Chen; David M. Tiede; Christine Cavazza; Martin J. Field; Marc Fontecave; Vincent Artero

Cobaloximes are popular H2 evolution molecular catalysts but have so far mainly been studied in nonaqueous conditions. We show here that they are also valuable for the design of artificial hydrogenases for application in neutral aqueous solutions and report on the preparation of two well-defined biohybrid species via the binding of two cobaloxime moieties, {Co(dmgH)2} and {Co(dmgBF2)2} (dmgH2 = dimethylglyoxime), to apo Sperm-whale myoglobin (SwMb). All spectroscopic data confirm that the cobaloxime moieties are inserted within the binding pocket of the SwMb protein and are coordinated to a histidine residue in the axial position of the cobalt complex, resulting in thermodynamically stable complexes. Quantum chemical/molecular mechanical docking calculations indicated a coordination preference for His93 over the other histidine residue (His64) present in the vicinity. Interestingly, the redox activity of the cobalt centers is retained in both biohybrids, which provides them with the catalytic activity for H2 evolution in near-neutral aqueous conditions.


Angewandte Chemie | 2012

X‐ray Transient Absorption and Picosecond IR Spectroscopy of Fulvalene(tetracarbonyl)diruthenium on Photoexcitation

Michael R. Harpham; Son C. Nguyen; Zongrui Hou; Jeffrey C. Grossman; Charles B. Harris; Michael W. Mara; Andrew B. Stickrath; Yosuke Kanai; Alexie M. Kolpak; Donghwa Lee; Di Jia Liu; Justin P. Lomont; Kasper Moth-Poulsen; Nikolai Vinokurov; Lin X. Chen; K. Peter C. Vollhardt

Caught in the light: The fulvalene diruthenium complex shown on the left side of the picture captures sun light, causing initial Ru-Ru bond rupture to furnish a long-lived triplet biradical of syn configuration. This species requires thermal activation to reach a crossing point (middle) into the singlet manifold on route to its thermal storage isomer on the right through the anti biradical.


Journal of Physical Chemistry A | 2011

Coherence in metal-metal-to-ligand-charge-transfer excited states of a dimetallic complex investigated by ultrafast transient absorption anisotropy.

Sung Cho; Michael W. Mara; Xianghuai Wang; Jenny V. Lockard; Aaron A. Rachford; Felix N. Castellano; Lin X. Chen

Coherence in the metal-metal-to-ligand-charge transfer (MMLCT) excited state of diplatinum molecule [Pt(ppy)(μ-(t)Bu(2)pz)](2) has been investigated through the observed oscillatory features and their corresponding frequencies as well as polarization dependence in the single-wavelength transient absorption (TA) anisotropy signals. Anticorrelated parallel and perpendicular TA signals with respect to the excitation polarization direction were captured, while minimal oscillatory features were observed in the magic angle TA signal. The combined analysis of the experimental results coupled with those previous calculated in the literature maps out a plausible excited state trajectory on the potential energy surface, suggesting that (1) the two energetically close MMLCT excited states due to the symmetry of the molecule may be electronically and coherently coupled with the charge density shifting back and forth between the two phenylpyridine (ppy) ligands, (2) the electronic coupling strength in the (1)MMLCT and (3)MMLCT states may be extracted from the oscillation frequencies of the TA signals to be 160 and 55 cm(-1), respectively, (3) a stepwise intersystem crossing cascades follows (1)MMLCT → (3)MMLCT (T(1b)) → (3)MMLCT (T(1a)), and (4) a possible electronic coherence can be modulated via the Pt-Pt σ-interactions over a picosecond and survive the first step of intersystem crossing. Future experiments are in progress to further investigate the origin of the oscillatory features. These experimental observations may have general implications in design of multimetal center complexes for photoactivated reactions where coherence in the excited states may facilitate directional charge or energy transfer along a certain direction between different parts of a molecule.


Journal of the American Chemical Society | 2015

Electron injection from copper diimine sensitizers into TiO2: Structural effects and their implications for solar energy conversion devices

Michael W. Mara; David N. Bowman; Onur Buyukcakir; Megan L. Shelby; Kristoffer Haldrup; Jier Huang; Michael R. Harpham; Andrew B. Stickrath; Xiaoyi Zhang; J. Fraser Stoddart; Ali Coskun; Elena Jakubikova; Lin X. Chen

Copper(I) diimine complexes have emerged as low cost replacements for ruthenium complexes as light sensitizers and electron donors, but their shorter metal-to-ligand-charge-transfer (MLCT) states lifetimes and lability of transient Cu(II) species impede their intended functions. Two carboxylated Cu(I) bis-2,9-diphenylphenanthroline (dpp) complexes [Cu(I)(dpp-O(CH2CH2O)5)(dpp-(COOH)2)](+) and [Cu(I)(dpp-O(CH2CH2O)5)(dpp-(Φ-COOH)2)](+) (Φ = tolyl) with different linker lengths were synthesized in which the MLCT-state solvent quenching pathways are effectively blocked, the lifetime of the singlet MLCT state is prolonged, and the transient Cu(II) ligands are stabilized. Aiming at understanding the mechanisms of structural influence to the interfacial charge transfer in the dye-sensitized solar cell mimics, electronic and geometric structures as well as dynamics for the MLCT state of these complexes and their hybrid with TiO2 nanoparticles were investigated using optical transient spectroscopy, X-ray transient absorption spectroscopy, time-dependent density functional theory, and quantum dynamics simulations. The combined results show that these complexes exhibit strong absorption throughout the visible spectrum due to the severely flattened ground state, and a long-lived charge-separated Cu(II) has been achieved via ultrafast electron injection (<300 fs) from the (1)MLCT state into TiO2 nanoparticles. The results also indicate that the TiO2-phen distance in these systems does not have significant effect on the efficiency of the interfacial electron-transfer process. The mechanisms for electron transfer in these systems are discussed and used to develop new strategies in optimizing copper(I) diimine complexes in solar energy conversion devices.


Journal of Physical Chemistry B | 2010

Electronic Processes in Conjugated Diblock Oligomers Mimicking Low Band-Gap Polymers. Experimental and Theoretical Spectral Analysis

Jodi M. Szarko; Brian S. Rolczynski; Jianchang Guo; Yongye Liang; Feng He; Michael W. Mara; Luping Yu; Lin X. Chen

Conjugated oligomers containing a common central thienothiophene unit symmetrically connected to two identical thiophene oligomers were studied as model systems for a series of low bandgap organic diblock copolymers. The oligothiophene side chain fragments were varied in length as a means to tune the electronic coupling between the thienothiophene and oligothiophene moieties. The fragment length dependence of both the ground- and excited-state electronic and structural properties of a series of diblock oligomers were investigated in detail. The charge transfer character in these diblock oligomers, revealed by their optical absorption and fluorescence spectra, is responsible for their low band gap and energy gap tunability compared with their homooligomer counterparts. The electronic spectra and theoretical analysis indicate a partially localized central charge in the first excited state. Using experimental results and comparing them with theoretical calculations, we estimate that the electronic effects from a single thienothiophene unit spreads over seven to nine adjacent units through π-conjugation along the oligomers.


Chemical Science | 2010

X-ray snapshots for metalloporphyrin axial ligation

Lin X. Chen; Xiaoyi Zhang; Erik C. Wasinger; Jenny V. Lockard; Andrew B. Stickrath; Michael W. Mara; Klaus Attenkofer; G. Jennings; Grigory Smolentsev; A. V. Soldatov

Axial ligation mechanisms of a metalloporphyrin, nickel(II) tetramesitylporphyrin (NiTMP), were investigated by static and transient X-ray absorption spectroscopy at Ni K-edge (8.333 keV). A surprisingly broad (i.e. ∼1.4 eV) linewidth for the 1s → 3dx2-y2 transition in the ground state was attributed to strong geometry dependent 3d molecular orbital (MO) energies due to coexisting conformers in solution. The broad distribution of 3d MO energy levels enables transient degeneracy of the 3dz2 and 3dx2-y2 MOs to produce a temporary vacancy in the 3dz2 MO which favors axial ligation. Photoexcitation also induces the vacancy in the 3dz2 MO, leading to a more than two-fold enhancement in the axial ligated species. Therefore, a unified axial ligation mechanism for both the ground and excited state is proposed based on the elucidation of the excited state structural dynamics, which will have a broad impact in understanding and controlling axial ligation in enzymatic reactions and molecular catalysis involving transient axial ligation.


Science | 2017

Metalloprotein entatic control of ligand-metal bonds quantified by ultrafast x-ray spectroscopy

Michael W. Mara; Ryan G. Hadt; Marco Reinhard; Thomas Kroll; Hyeongtaek Lim; Robert W. Hartsock; Roberto Alonso-Mori; Matthieu Chollet; James M. Glownia; S. Nelson; Dimosthenis Sokaras; Kristjan Kunnus; Keith O. Hodgson; Britt Hedman; Uwe Bergmann; Kelly J. Gaffney; Edward I. Solomon

Sulfurs balancing act in cytochrome c Cytochrome c enzymes have two distinct functions that depend on the position of a methionine residue. When the sulfur in the methionine side chain coordinates with iron in the enzymes active site, the protein is optimized for electron transfer; otherwise, it is poised for peroxidase activity. Mara et al. used ultrafast x-ray absorption and emission spectroscopy to probe the energetics of this Fe-S bond (see the Perspective by Bren and Raven). By breaking the bond transiently with light and then timing its reformation, they determined that the surrounding protein environment boosts the bond strength by 4 kilocalories per mole—just enough to toggle between each functional state at a practical rate. Science, this issue p. 1276; see also p. 1236 The local structure of cytochrome c enhances the strength of an iron-sulfur bond in the active site by 4 kilocalories per mole. The multifunctional protein cytochrome c (cyt c) plays key roles in electron transport and apoptosis, switching function by modulating bonding between a heme iron and the sulfur in a methionine residue. This Fe–S(Met) bond is too weak to persist in the absence of protein constraints. We ruptured the bond in ferrous cyt c using an optical laser pulse and monitored the bond reformation within the protein active site using ultrafast x-ray pulses from an x-ray free-electron laser, determining that the Fe–S(Met) bond enthalpy is ~4 kcal/mol stronger than in the absence of protein constraints. The 4 kcal/mol is comparable with calculations of stabilization effects in other systems, demonstrating how biological systems use an entatic state for modest yet accessible energetics to modulate chemical function.

Collaboration


Dive into the Michael W. Mara's collaboration.

Top Co-Authors

Avatar

Lin X. Chen

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jier Huang

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaoyi Zhang

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Michael R. Harpham

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kristoffer Haldrup

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

David M. Tiede

Argonne National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge