Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael W. Salter is active.

Publication


Featured researches published by Michael W. Salter.


Nature | 2005

BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain

Jeffrey A. M. Coull; Simon Beggs; Dominic Boudreau; Dominick Boivin; Makoto Tsuda; Kazuhide Inoue; Claude Gravel; Michael W. Salter; Yves De Koninck

Neuropathic pain that occurs after peripheral nerve injury depends on the hyperexcitability of neurons in the dorsal horn of the spinal cord. Spinal microglia stimulated by ATP contribute to tactile allodynia, a highly debilitating symptom of pain induced by nerve injury. Signalling between microglia and neurons is therefore an essential link in neuropathic pain transmission, but how this signalling occurs is unknown. Here we show that ATP-stimulated microglia cause a depolarizing shift in the anion reversal potential (Eanion) in spinal lamina I neurons. This shift inverts the polarity of currents activated by GABA (γ-amino butyric acid), as has been shown to occur after peripheral nerve injury. Applying brain-derived neurotrophic factor (BDNF) mimics the alteration in Eanion. Blocking signalling between BDNF and the receptor TrkB reverses the allodynia and the Eanion shift that follows both nerve injury and administration of ATP-stimulated microglia. ATP stimulation evokes the release of BDNF from microglia. Preventing BDNF release from microglia by pretreating them with interfering RNA directed against BDNF before ATP stimulation also inhibits the effects of these cells on the withdrawal threshold and Eanion. Our results show that ATP-stimulated microglia signal to lamina I neurons, causing a collapse of their transmembrane anion gradient, and that BDNF is a crucial signalling molecule between microglia and neurons. Blocking this microglia–neuron signalling pathway may represent a therapeutic strategy for treating neuropathic pain.


Nature Neuroscience | 2005

Regulation of NMDA receptor trafficking by amyloid-|[beta]|

Eric M. Snyder; Yi Nong; Claudia G. Almeida; Surojit Paul; Timothy Moran; Eun Young Choi; Angus C. Nairn; Michael W. Salter; Paul J. Lombroso; Gunnar K. Gouras; Paul Greengard

Amyloid-β peptide is elevated in the brains of patients with Alzheimer disease and is believed to be causative in the disease process. Amyloid-β reduces glutamatergic transmission and inhibits synaptic plasticity, although the underlying mechanisms are unknown. We found that application of amyloid-β promoted endocytosis of NMDA receptors in cortical neurons. In addition, neurons from a genetic mouse model of Alzheimer disease expressed reduced amounts of surface NMDA receptors. Reducing amyloid-β by treating neurons with a γ-secretase inhibitor restored surface expression of NMDA receptors. Consistent with these data, amyloid-β application produced a rapid and persistent depression of NMDA-evoked currents in cortical neurons. Amyloid-β–dependent endocytosis of NMDA receptors required the α-7 nicotinic receptor, protein phosphatase 2B (PP2B) and the tyrosine phosphatase STEP. Dephosphorylation of the NMDA receptor subunit NR2B at Tyr1472 correlated with receptor endocytosis. These data indicate a new mechanism by which amyloid-β can cause synaptic dysfunction and contribute to Alzheimer disease pathology.


Nature | 2003

P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury

Makoto Tsuda; Yukari Shigemoto-Mogami; Schuichi Koizumi; Akito Mizokoshi; Shinichi Kohsaka; Michael W. Salter; Kazuhide Inoue

Pain after nerve damage is an expression of pathological operation of the nervous system, one hallmark of which is tactile allodynia—pain hypersensitivity evoked by innocuous stimuli. Effective therapy for this pain is lacking, and the underlying mechanisms are poorly understood. Here we report that pharmacological blockade of spinal P2X4 receptors (P2X4Rs), a subtype of ionotropic ATP receptor, reversed tactile allodynia caused by peripheral nerve injury without affecting acute pain behaviours in naive animals. After nerve injury, P2X4R expression increased strikingly in the ipsilateral spinal cord, and P2X4Rs were induced in hyperactive microglia but not in neurons or astrocytes. Intraspinal administration of P2X4R antisense oligodeoxynucleotide decreased the induction of P2X4Rs and suppressed tactile allodynia after nerve injury. Conversely, intraspinal administration of microglia in which P2X4Rs had been induced and stimulated, produced tactile allodynia in naive rats. Taken together, our results demonstrate that activation of P2X4Rs in hyperactive microglia is necessary for tactile allodynia after nerve injury and is sufficient to produce tactile allodynia in normal animals. Thus, blocking P2X4Rs in microglia might be a new therapeutic strategy for pain induced by nerve injury.


Nature Reviews Neuroscience | 2004

Src kinases: a hub for NMDA receptor regulation

Michael W. Salter; Lorraine V. Kalia

In the central nervous system, synaptic strength is regulated partly by changes in the function and number of postsynaptic glutamate receptors. The NMDA (N-methyl-D-aspartate) subtype of glutamate receptor (NMDAR) is regulated in part by the opposing actions of protein tyrosine kinases and phosphotyrosine phosphatases. Members of the Src family of protein tyrosine kinases upregulate NMDAR function, thereby gating the production of NMDAR-dependent synaptic potentiation. Src family kinases (SFKs) are a crucial point of convergence for signalling pathways that enhance NMDAR activity, so that SFKs act as a molecular hub for the control of NMDARs. These kinases regulate synaptic strength and are therefore vital for processes that underlie physiological and pathological plasticity in the brain and spinal cord.


Nature | 2003

Glycine binding primes NMDA receptor internalization

Yi Nong; Yue-Qiao Huang; William Ju; Lorraine V. Kalia; Gholamreza Ahmadian; Yu Tian Wang; Michael W. Salter

NMDA (N-methyl-d-aspartate) receptors (NMDARs) are a principal subtype of excitatory ligand-gated ion channel with prominent roles in physiological and disease processes in the central nervous system. Recognition that glycine potentiates NMDAR-mediated currents as well as being a requisite co-agonist of the NMDAR subtype of ‘glutamate’ receptor profoundly changed our understanding of chemical synaptic communication in the central nervous system. The binding of both glycine and glutamate is necessary to cause opening of the NMDAR conductance pore. Although binding of either agonist alone is insufficient to cause current flow through the channel, we report here that stimulation of the glycine site initiates signalling through the NMDAR complex, priming the receptors for clathrin-dependent endocytosis. Glycine binding alone does not cause the receptor to be endocytosed; this requires both glycine and glutamate site activation of NMDARs. The priming effect of glycine is mimicked by the NMDAR glycine site agonist d-serine, and is blocked by competitive glycine site antagonists. Synaptic as well as extrasynaptic NMDARs are primed for internalization by glycine site stimulation. Our results demonstrate transmembrane signal transduction through activating the glycine site of NMDARs, and elucidate a model for modulating cell–cell communication in the central nervous system.


Neuron | 2000

Regulation of Neuregulin Signaling by PSD-95 Interacting with ErbB4 at CNS Synapses

Yang Z. Huang; Sandra Won; Declan W. Ali; Qiang Wang; Michael Tanowitz; Quan S. Du; Kenneth A. Pelkey; Da J. Yang; Wen C. Xiong; Michael W. Salter; Lin Mei

Neuregulins (NRGs) and their receptors, the ErbB protein tyrosine kinases, are essential for neuronal development, but their functions in the adult CNS are unknown. We report that ErbB4 is enriched in the postsynaptic density (PSD) and associates with PSD-95. Heterologous expression of PSD-95 enhanced NRG activation of ErbB4 and MAP kinase. Conversely, inhibiting expression of PSD-95 in neurons attenuated NRG-mediated activation of MAP kinase. PSD-95 formed a ternary complex with two molecules of ErbB4, suggesting that PSD-95 facilitates ErbB4 dimerization. Finally, NRG suppressed induction of long-term potentiation in the hippocampal CA1 region without affecting basal synaptic transmission. Thus, NRG signaling may be synaptic and regulated by PSD-95. A role of NRG signaling in the adult CNS may be modulation of synaptic plasticity.


Lancet Neurology | 2008

NMDA receptors in clinical neurology: excitatory times ahead

Lorraine V. Kalia; Suneil K. Kalia; Michael W. Salter

Since the N-methyl-D-aspartate receptor (NMDAR) subunits were cloned less than two decades ago, a substantial amount of research has been invested into understanding their physiological function in the healthy CNS. Research has also been directed at their pathological roles in various neurological diseases, including disorders resulting from acute excitotoxic insults (eg, ischaemic stroke, traumatic brain injury), diseases due to chronic neurodegeneration (eg, Alzheimers, Parkinsons, and Huntingtons diseases and amyotrophic lateral sclerosis), disorders arising from sensitisation of neurons (eg, epilepsy, neuropathic pain), and neurodevelopmental disorders associated with NMDAR hypofunction (eg, schizophrenia). Selective NMDAR antagonists have not produced positive results in clinical trials. However, there are other NMDAR-targeted therapies used in current practice that are effective for treating some neurological disorders. In this Review, we describe the evidence for the use of these therapies and provide an overview of drugs being investigated in clinical trials. We also discuss new NMDAR-targeted strategies in clinical neurology.


Current Opinion in Neurobiology | 2001

NMDA receptor regulation by Src kinase signalling in excitatory synaptic transmission and plasticity

Declan W. Ali; Michael W. Salter

Regulation of postsynaptic glutamate receptors is one of the main mechanisms for altering synaptic efficacy in the central nervous system. Recent studies have given insight into the upregulation of the NMDA receptor by Src family tyrosine kinases, which bind to scaffolding proteins in the NMDA receptor complex. Src acts as a common step in signalling cascades that link G-protein-coupled receptors with protein kinase C via the intermediary cell-adhesion kinase beta. This signalling to NMDA receptors is required for long-term potentiation in the CA1 region of the hippocampus.


The Journal of Neuroscience | 2009

P2X4-receptor mediated synthesis and release of brain-derived neurotrophic factor in microglia is dependent on calcium and p38-mitogen-activated protein kinase activation

Tuan Trang; Simon Beggs; Xiang Wan; Michael W. Salter

Microglia in the dorsal horn of the spinal cord are increasingly recognized as being crucial in the pathogenesis of pain hypersensitivity after injury to a peripheral nerve. It is known that P2X4 purinoceptors (P2X4Rs) cause the release of brain-derived neurotrophic factor (BDNF) from microglia, which is necessary for maintaining pain hypersensitivity after nerve injury. However, there is a critical gap in understanding how activation of microglial P2X4Rs leads to the release of BDNF. Here, we show that stimulating P2X4Rs with ATP evokes a biphasic release of BDNF from microglia: an early phase occurs within 5 min, whereas a late phase peaks 60 min after ATP stimulation. Concomitant with the late phase of release is an increased level of BDNF within the microglia. Both phases of BDNF release and the accumulation within the microglia are dependent on extracellular Ca2+. The late phase of BDNF release and accumulation, but not the early phase of release, are suppressed by inhibiting transcription and translation, indicating that activation of P2X4R causes an initial release of a pre-existing pool of BDNF followed by an increase in de novo synthesis of BDNF. The release of BDNF is abolished by inhibiting SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor)-mediated exocytosis. Furthermore, we find that the P2X4R-evoked release and synthesis of BDNF are dependent on activation of p38-mitogen-activated protein kinase (MAPK). Together, our findings provide a unifying mechanism for pain hypersensitivity after peripheral nerve injury through P2X4R-evoked increase in Ca2+ and activation of p38-MAPK leading to the synthesis and exocytotic release of BDNF from microglia.


Nature Neuroscience | 2015

Different immune cells mediate mechanical pain hypersensitivity in male and female mice

Josiane C.S. Mapplebeck; S. Rosen; Simon Beggs; Sarah Taves; Jessica K. Alexander; Loren J. Martin; Jean-Sebastien Austin; Susana G. Sotocinal; Di Chen; Mu Yang; Xiang Qun Shi; Hao Huang; Nicolas J. Pillon; Philip J. Bilan; Yu Shan Tu; Amira Klip; Ru-Rong Ji; Ji Zhang; Michael W. Salter; Jeffrey S. Mogil

A large and rapidly increasing body of evidence indicates that microglia-to-neuron signaling is essential for chronic pain hypersensitivity. Using multiple approaches, we found that microglia are not required for mechanical pain hypersensitivity in female mice; female mice achieved similar levels of pain hypersensitivity using adaptive immune cells, likely T lymphocytes. This sexual dimorphism suggests that male mice cannot be used as proxies for females in pain research.

Collaboration


Dive into the Michael W. Salter's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yu Tian Wang

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Kenneth A. Pelkey

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Clifford J. Woolf

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge