Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Westberg is active.

Publication


Featured researches published by Michael Westberg.


Journal of the American Chemical Society | 2015

Rational design of an efficient, genetically encodable, protein-encased singlet oxygen photosensitizer.

Michael Westberg; Lotte Holmegaard; Frederico M. Pimenta; Michael Etzerodt; Peter R. Ogilby

Singlet oxygen, O(2)(a(1)Δ(g)), plays a key role in many processes of cell signaling. Limitations in mechanistic studies of such processes are generally associated with the difficulty of controlling the amount and location of O(2)(a(1)Δ(g)) production in or on a cell. As such, there is great need for a system that (a) selectively produces O(2)(a(1)Δ(g)) in appreciable and accurately quantifiable yields and (b) can be localized in a specific place at the suborganelle level. A genetically encodable, protein-encased photosensitizer is one way to achieve this goal. Through a systematic and rational approach involving mutations to a LOV2 protein that binds the chromophore flavin mononucleotide (FMN), we have developed a promising photosensitizer that overcomes many of the problems that affect related systems currently in use. Specifically, by decreasing the extent of hydrogen bonding between FMN and a specific amino acid residue in the local protein environment, we decrease the susceptibility of FMN to undesired photoinitiated electron-transfer reactions that kinetically compete with O(2)(a(1)Δ(g)) production. As a consequence, our protein-encased FMN system produces O(2)(a(1)Δ(g)) with the uniquely large quantum efficiency of 0.25 ± 0.03. We have also quantified other key photophysical parameters that characterize this sensitizer system, including unprecedented H(2)O/D(2)O solvent isotope effects on the O(2)(a(1)Δ(g)) formation kinetics and yields. As such, our results facilitate future systematic developments in this field.


Journal of Physical Chemistry B | 2012

Singlet-Oxygen-Mediated Cell Death Using Spatially-Localized Two-Photon Excitation of an Extracellular Sensitizer

Frederico M. Pimenta; Rasmus Lund Jensen; Lotte Holmegaard; Tatiana V. Esipova; Michael Westberg; Thomas Breitenbach; Peter R. Ogilby

Controlling and quantifying the photosensitized production of singlet oxygen are key aspects in mechanistic studies of oxygen-dependent photoinitiated cell death. In this regard, the commonly accepted practice of using intracellular photosensitizers is, unfortunately, plagued by problems that include the inability to accurately (1) quantify the sensitizer concentration in the irradiated domain and (2) control the local environment that influences light delivery and sensitizer photophysics. However, capitalizing on the fact that singlet oxygen produced outside a cell is also cytotoxic, many of these problems can be avoided with the use of an extracellular sensitizer. For the present study, a hydrophilic dendrimer-encased membrane-impermeable sensitizer was used to generate an extracellular population of singlet oxygen upon spatially localized two-photon irradiation. Through the use of this sensitizer and this approach, it is now possible to better control the singlet oxygen dose in microscope-based time- and space-resolved single cell experiments. Thus, we provide a solution to a limiting problem in mechanistic studies of singlet-oxygen-mediated cell death.


Methods | 2016

Exerting better control and specificity with singlet oxygen experiments in live mammalian cells.

Michael Westberg; Mikkel Bregnhøj; Chiranjib Banerjee; Alfonso Blázquez-Castro; Thomas Breitenbach; Peter R. Ogilby

Singlet molecular oxygen, O2(a1Δg), is a Reactive Oxygen Species, ROS, that acts as a signaling and/or perturbing agent in mammalian cells, influencing processes that range from cell proliferation to cell death. Although the importance of O2(a1Δg) in this regard is acknowledged, an understanding of the targets and mechanisms of O2(a1Δg) action is inadequate. Thus, methods that better facilitate studies of O2(a1Δg) in mammalian cells are highly desired. This is particularly important because, as a consequence of its chemistry in a cell, O2(a1Δg) can spawn the generation of other ROS (e.g., the hydroxyl radical) that, in turn, can have a unique influence on cell behavior and function. Therefore, exerting better control and specificity in O2(a1Δg) experiments ultimately reduces the number of variables in general studies to unravel the details of ROS-dependent cell dynamics. In this article, we summarize our recent efforts to produce O2(a1Δg) with increased control and selectivity in microscope-based single-cell experiments. The topics addressed include (1) two-photon excitation of a photosensitizer using a focused laser to create a spatially-localized volume of O2(a1Δg) with sub-cellular dimensions, (2) protein-encapsulated photosensitizers that can be localized in a specific cellular domain using genetic engineering, and (3) direct excitation of dissolved oxygen in sensitizer-free experiments to selectively produce O2(a1Δg) at the expense of other ROS. We also comment on our recent efforts to monitor O2(a1Δg) in cells and to monitor the cells response to O2(a1Δg).


Dalton Transactions | 2016

A ligand substituted tungsten iodide cluster: luminescence vs. singlet oxygen production

Lara Riehl; Alexander Seyboldt; Markus Ströbele; David Enseling; Thomas Jüstel; Michael Westberg; Peter R. Ogilby; H.-Jürgen Meyer

Octahedral tungsten iodide clusters equipped with apical ligands (L) are synthesized to implement substantial photophysical properties. The [W6I8(CF3COO)6]2- cluster reported herein is the first example of a family of ligand substituted [W6I8L6]2- clusters. Such compounds are expected to exhibit a rich photochemistry in which the apical ligands play a crucial role. The versatile solid state and solution phase photophysical properties of (TBA)2[W6I8(CF3COO)6] described herein parallel characteristics obtained in some photophysically active organic compounds, including a broad absorption in the UV/VIS region. Upon irradiation of this compound, a broad red emission is observed in the VIS/NIR region resulting from excited triplet states, and singlet oxygen (a1Δg) is generated in the presence of O2.


Journal of Physical Chemistry B | 2017

No Photon Wasted: An Efficient and Selective Singlet Oxygen Photosensitizing Protein

Michael Westberg; Mikkel Bregnhøj; Michael Etzerodt; Peter R. Ogilby

Optogenetics has been, and will continue to be, a boon to mechanistic studies of cellular processes. Genetically encodable proteins that sensitize the production of reactive oxygen species (ROS) are expected to play an increasingly important role, particularly in elucidating mechanisms of temporally and spatially dependent cell signaling. However, a substantial challenge in developing such photosensitizing proteins has been to funnel the optical excitation energy into the initial selective production of only one ROS. Singlet molecular oxygen, O2(a1Δg), is a ROS known to have a wide range of effects on cell function. Nevertheless, mechanistic details of singlet oxygens behavior in a cell are lacking. On the basis of the rational optimization of a LOV-derived flavoprotein, we now report the development and photophysical characterization of a protein-encased photosensitizer that efficiently and selectively produces singlet oxygen at the expense of other ROS, especially ROS that derive from photoinduced electron transfer reactions. These results set the stage for a plethora of new experiments to elucidate ROS-mediated events in cells.


Accounts of Chemical Research | 2017

Singlet Oxygen Photophysics in Liquid Solvents: Converging on a Unified Picture

Mikkel Bregnhøj; Michael Westberg; Boris F. Minaev; Peter R. Ogilby

Singlet oxygen, O2(a1Δg), the lowest excited electronic state of molecular oxygen, is an omnipresent part of life on earth. It is readily formed through a variety of chemical and photochemical processes, and its unique reactions are important not just as a tool in chemical syntheses but also in processes that range from polymer degradation to signaling in biological cells. For these reasons, O2(a1Δg) has been the subject of intense activity in a broad distribution of scientific fields for the past ∼50 years. The characteristic reactions of O2(a1Δg) kinetically compete with processes that deactivate this excited state to the ground state of oxygen, O2(X3Σg-). Moreover, O2(a1Δg) is ideally monitored using one of these deactivation channels: O2(a1Δg) → O2(X3Σg-) phosphorescence at 1270 nm. Thus, there is ample justification to study and control these competing processes, including those mediated by solvents, and the chemistry community has likewise actively tackled this issue. In themselves, the solvent-mediated radiative and nonradiative transitions between the three lowest-lying electronic states of oxygen [O2(X3Σg-), O2(a1Δg), and O2(b1Σg+)] are relevant to issues at the core of modern chemistry. In the isolated oxygen molecule, these transitions are forbidden by quantum-mechanical selection rules. However, solvent molecules perturb oxygen in such a way as to make these transitions more probable. Most interestingly, the effect of a series of solvents on the O2(X3Σg-)-O2(b1Σg+) transition, for example, can be totally different from the effect of the same series of solvents on the O2(X3Σg-)-O2(a1Δg) transition. Moreover, a given solvent that appreciably increases the probability of a radiative transition generally does not provide a correspondingly viable pathway for nonradiative energy loss, and vice versa. The ∼50 years of experimental work leading to these conclusions were not easy; spectroscopically monitoring such weak and low-energy transitions in time-resolved experiments is challenging. Consequently, results obtained from different laboratories often were not consistent. In turn, attempts to interpret molecular events were often simplistic and/or misguided. However, over the recent past, increasingly accurate experiments have converged on a base of credible data, finally forming a consistent picture of this system that is resonant with theoretical models. The concepts involved encompass a large fraction of chemistrys fundamental lexicon, e.g., spin-orbit coupling, state mixing, quantum tunneling, electronic-to-vibrational energy transfer, activation barriers, collision complexes, and charge-transfer interactions. In this Account, we provide an explanatory overview of the ways in which a given solvent will perturb the radiative and nonradiative transitions between the O2(X3Σg-), O2(a1Δg), and O2(b1Σg+) states.


Analytical Chemistry | 2017

Monitoring Interfacial Lipid Oxidation in Oil-in-Water Emulsions Using Spatially Resolved Optical Techniques

Chiranjib Banerjee; Michael Westberg; Thomas Breitenbach; Mikkel Bregnhøj; Peter R. Ogilby

The oxidation of lipids is an important phenomenon with ramifications for disciplines that range from food science to cell biology. The development and characterization of tools and techniques to monitor lipid oxidation are thus relevant. Of particular significance in this regard are tools that facilitate the study of oxidations at interfaces in heterogeneous samples (e.g., oil-in-water emulsions, cell membranes). In this article, we establish a proof-of-principle for methods to initiate and then monitor such oxidations with high spatial resolution. The experiments were performed using oil-in-water emulsions of polyunsaturated fatty acids (PUFAs) prepared from cod liver oil. We produced singlet oxygen at a point near the oil-water interface of a given PUFA droplet in a spatially localized two-photon photosensitized process. We then followed the oxidation reactions initiated by this process with the fluorescence-based imaging technique of structured illumination microscopy (SIM). We conclude that the approach reported herein has attributes well-suited to the study of lipid oxidation in heterogeneous samples.


ACS OMEGA | 2017

Azadioxatriangulenium and Diazaoxatriangulenium: Quantum Yields and Fundamental Photophysical Properties

Sidsel Ammitzbøll Bogh; Mats Simmermacher; Michael Westberg; Mikkel Bregnhøj; Martin Rosenberg; Luca De Vico; Manoel Veiga; Bo W. Laursen; Peter R. Ogilby; Stephan P. A. Sauer; Thomas Just Sørensen

Over the last decade, we have investigated and exploited the photophysical properties of triangulenium dyes. Azadioxatriangulenium (ADOTA) and diazaoxatriangulenium (DAOTA), in particular, have features that make them useful in various fluorescence-based technologies (e.g., bioimaging). Through our work with ADOTA and DAOTA, we became aware that the reported fluorescence quantum yields (ϕfl) for these dyes are lower than their actual values. We thus set out to further investigate the fundamental structure–property relationships in these unique conjugated cationic systems. The nonradiative processes in the systems were explored using transient absorption spectroscopy and time-resolved emission spectroscopy in combination with computational chemistry. The influence of molecular oxygen on the fluorescence properties was explored, and the singlet oxygen sensitization efficiencies of ADOTA and DAOTA were determined. We conclude that, for these dyes, the amount of nonradiative deactivation of the first excited singlet state (S1) of the azaoxa-triangulenium fluorophores is low, that the rate of such deactivation is slower than what is observed in common cationic dyes, that there are no observable radiative transitions occurring from the first excited triplet state (T1) of these dyes, and that the efficiency of sensitized singlet oxygen production is low (ϕΔ ≤ 10%). These photophysical results provide a solid base upon which technological applications of these fluorescent dyes can be built.


Journal of Physical Chemistry B | 2017

Temperature Sensitive Singlet Oxygen Photosensitization by LOV-Derived Fluorescent Flavoproteins

Michael Westberg; Mikkel Bregnhøj; Michael Etzerodt; Peter R. Ogilby

Optogenetic sensitizers that selectively produce a given reactive oxygen species (ROS) constitute a promising tool for studying cell signaling processes with high levels of spatiotemporal control. However, to harness the full potential of this tool for live cell studies, the photophysics of currently available systems need to be explored further and optimized. Of particular interest in this regard, are the flavoproteins miniSOG and SOPP, both of which (1) contain the chromophore flavin mononucleotide, FMN, in a LOV-derived protein enclosure, and (2) photosensitize the production of singlet oxygen, O2(a1Δg). Here we present an extensive experimental study of the singlet and triplet state photophysics of FMN in SOPP and miniSOG over a physiologically relevant temperature range. Although changes in temperature only affect the singlet excited state photophysics slightly, the processes that influence the deactivation of the triplet excited state are more sensitive to temperature. Most notably, for both proteins, the rate constant for quenching of 3FMN by ground state oxygen, O2(X3Σg-), increases ∼10-fold upon increasing the temperature from 10 to 43 °C, while the oxygen-independent channels of triplet state deactivation are less affected. As a consequence, this increase in temperature results in higher yields of O2(a1Δg) formation for both SOPP and miniSOG. We also show that the quantum yields of O2(a1Δg) production by both miniSOG and SOPP are mainly limited by the fraction of FMN triplet states quenched by O2(X3Σg-). The results presented herein provide a much-needed quantitative framework that will facilitate the future development of optogenetic ROS sensitizers.


Photochemistry and Photobiology | 2018

Uric Acid: A Less-than-Perfect Probe for Singlet Oxygen

Mikkel Bregnhøj; Lea Dichmann; Ciaran K. McLoughlin; Michael Westberg; Peter R. Ogilby

Uric acid and/or its monoanion has long been used as chemical‐trapping agents to demonstrate the presence of singlet oxygen, O2(a1Δg), in aqueous systems. “Oxidative bleaching” of uric acid, generally monitored through changes in the uric acid absorption spectrum, is often used in support of claims for the intermediacy of O2(a1Δg). The bleaching of uric acid has also been used to quantify photosensitized O2(a1Δg) yields in selected systems. Unfortunately, experiments performed to these ends often neglect processes and phenomena that can influence the results obtained. For the present study, we experimentally examined the behavior of uric acid under a variety of conditions relevant to the photoinitiated creation and subsequent removal of O2(a1Δg). Although the oxidative destruction of uric acid can indeed be a useful tool in some cases, we conclude that caution must be exercised such as not to incorrectly interpret the data obtained.

Collaboration


Dive into the Michael Westberg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alfonso Blázquez-Castro

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Chiranjib Banerjee

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge