Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Zimmer is active.

Publication


Featured researches published by Michael Zimmer.


Journal of Immunology | 2003

A Role for Class A Scavenger Receptor in Dendritic Cell Nibbling from Live Cells

Larry A. Harshyne; Michael Zimmer; Simon C. Watkins; Simon M. Barratt-Boyes

Monocyte-derived dendritic cells (DC) possess the unique capacity to capture Ag from live cells through intimate cell contact, a process referred to as nibbling. We sought to define the receptor(s) mediating DC nibbling. Uptake of fluorescently labeled plasma membrane from live cells by DC was inhibited by protease treatment and by a panel of polyanionic ligands, implicating scavenger receptors (SR) in this process. Differential expression of SR on DC and macrophages correlated with the capacity to acquire membrane from live cells. Internalized membrane colocalized with SR ligand and entered the endosomal pathway. DC very efficiently acquired and internalized gp100 tumor Ag expressed at the surface of viable adenocarcinoma cells via recombinant adenoviral infection. Cross-presentation of gp100 by DC to MHC class I-restricted T cells was inhibited by polyanionic SR ligand and an Ab to type A SR (SR-A), whereas Ab to the class B SR CD36, which mediates uptake of apoptotic cells, induced no inhibition. DC capture of fluorescently labeled membrane from live cells was partially blocked by SR-A-specific Ab, suggesting that other SR may also be contributing to nibbling. DC maturation resulted in a switch in expression from type II SR-A (SR-AII) to the SR-AI splice variant. Finally, SR-A was identified on interdigitating DC isolated from monkey lymph nodes. These findings define a novel role for SR-A, and suggest that Ag uptake from live cells by DC may be important in the generation of immunity and in the maintenance of peripheral tolerance in vivo.


Journal of Immunology | 2000

Maturation and trafficking of monocyte-derived dendritic cells in monkeys: implications for dendritic cell-based vaccines.

Simon M. Barratt-Boyes; Michael Zimmer; Larry A. Harshyne; E. Michael Meyer; Simon C. Watkins; Saverio Capuano; Michael Murphey-Corb; Louis D. Falo; Albert D. Donnenberg

Human dendritic cells (DC) have polarized responses to chemokines as a function of maturation state, but the effect of maturation on DC trafficking in vivo is not known. We have addressed this question in a highly relevant rhesus macaque model. We demonstrate that immature and CD40 ligand-matured monocyte-derived DC have characteristic phenotypic and functional differences in vitro. In particular, immature DC express CC chemokine receptor 5 (CCR5) and migrate in response to macrophage inflammatory protein-1α (MIP-1α), whereas mature DC switch expression to CCR7 and respond exclusively to MIP-3β and 6Ckine. Mature DC transduced to express a marker gene localized to lymph nodes after intradermal injection, constituting 1.5% of lymph node DC. In contrast, cutaneous DC transfected in situ via gene gun were detected in the draining lymph node at a 20-fold lower frequency. Unexpectedly, the state of maturation at the time of injection had no influence on the proportion of DC that localized to draining lymph nodes, as labeled immature and mature DC were detected in equal numbers. Immature DC that trafficked to lymph nodes underwent a significant up-regulation of CD86 expression indicative of spontaneous maturation. Moreover, immature DC exited completely from the dermis within 36 h of injection, whereas mature DC persisted in large numbers associated with a marked inflammatory infiltrate. We conclude that in vitro maturation is not a requirement for effective migration of DC in vivo and suggest that administration of Ag-loaded immature DC that undergo natural maturation following injection may be preferred for DC-based immunotherapy.


Journal of Clinical Oncology | 2009

Yttrium-90 Ibritumomab Tiuxetan Doses Calculated to Deliver up to 15 Gy to Critical Organs May Be Safely Combined With High-Dose BEAM and Autologous Transplantation in Relapsed or Refractory B-Cell Non-Hodgkin's Lymphoma

Jane N. Winter; David J. Inwards; Stewart Spies; Gregory A. Wiseman; David Patton; William D. Erwin; Alfred Rademaker; Bing Bing Weitner; S. Williams; Martin S. Tallman; I. N. M. Micallef; Jayesh Mehta; Seema Singhal; Andrew M. Evens; Michael Zimmer; Arturo Molina; Christine A. White; Leo I. Gordon

PURPOSE To determine the maximum-tolerated radiation-absorbed dose (RAD) to critical organs delivered by yttrium-90 ((90)Y) ibritumomab tiuxetan in combination with high-dose carmustine, etoposide, cytarabine, and melphalan (BEAM) chemotherapy with autologous transplantation. PATIENTS AND METHODS Eligible patients had relapsed or refractory CD20+ non-Hodgkins lymphoma (NHL). Individualized (90)Y activities were based on dosimetry and were calculated to deliver cohort-defined RAD (1 to 17 Gy) to critical organs with three to six patients per cohort. The therapeutic dose of (90)Y ibritumomab tiuxetan was followed by high-dose BEAM and autologous transplantation. RESULTS Forty-four patients were treated. Thirty percent of patients had achieved less than a partial remission to their most recent therapy and would not have been eligible for autologous transplantation at most centers. The toxicity profile was similar to that associated with high-dose BEAM chemotherapy. Two dose-limiting toxicities occurred at the 17 Gy dose level, which made 15 Gy the recommended maximum-tolerated RAD. Although eight patients received at least twice the conventional dose of 0.4 mCi/kg, a weight-based strategy at 0.8 mCi/kg would have resulted in a wide range of RAD; nearly 25% of patient cases would have received 17 Gy or more, and many would have received less than 10 Gy. With a median follow-up of 33 months for all patients, the estimated 3-year progression-free and overall survivals were 43% and 60%, respectively. CONCLUSION Dose-escalated (90)Y ibritumomab tiuxetan may be safely combined with high-dose BEAM with autologous transplantation and has the potential to be more effective than standard-dose radioimmunotherapy. Careful dosimetry is required to avoid toxicity and undertreatment.


Journal of Experimental Medicine | 2009

CD1-restricted adaptive immune responses to Mycobacteria in human group 1 CD1 transgenic mice

Kyrie Felio; Hanh Nguyen; Christopher C. Dascher; Hak-Jong Choi; Sha Li; Michael Zimmer; Angela Colmone; D. Branch Moody; Michael B. Brenner; Chyung Ru Wang

Group 1 CD1 (CD1a, CD1b, and CD1c)–restricted T cells recognize mycobacterial lipid antigens and are found at higher frequencies in Mycobacterium tuberculosis (Mtb)–infected individuals. However, their role and dynamics during infection remain unknown because of the lack of a suitable small animal model. We have generated human group 1 CD1 transgenic (hCD1Tg) mice that express all three human group 1 CD1 isoforms and support the development of group 1 CD1–restricted T cells with diverse T cell receptor usage. Both mycobacterial infection and immunization with Mtb lipids elicit group 1 CD1–restricted Mtb lipid–specific T cell responses in hCD1Tg mice. In contrast to CD1d-restricted NKT cells, which rapidly respond to initial stimulation but exhibit anergy upon reexposure, group 1 CD1–restricted T cells exhibit delayed primary responses and more rapid secondary responses, similar to conventional T cells. Collectively, our data demonstrate that group 1 CD1–restricted T cells participate in adaptive immune responses upon mycobacterial infection and could serve as targets for the development of novel Mtb vaccines.


Gastroenterology | 2012

Dysregulation of CD1d-Restricted Type II Natural Killer T Cells Leads to Spontaneous Development of Colitis in Mice

Chia Min Liao; Michael Zimmer; Sharmila Shanmuganad; Hon-Tsen Yu; Susanna Cardell; Chyung Ru Wang

BACKGROUND & AIMS CD1d-restricted natural killer (NK) T cells are a subset of immunoregulatory T cells that comprise type I (express the semi-invariant T-cell receptor [TCR] and can be detected using the α-galactosylceramide/CD1d tetramer) and type II (express diverse TCRs and cannot be directly identified). Studies in mouse models of inflammatory bowel disease revealed a complex role for type I NKT cells in the development of colitis. Type II NKT cells have been associated with intestinal inflammation in patients with ulcerative colitis. METHODS To investigate whether dysregulation of type II NKT cells, caused by increased expression of CD1d, can contribute to colitis, we generated transgenic mice that express high levels of CD1d and a TCR from an autoreactive, type II NKT cell (CD1dTg/24αβTg mice). RESULTS CD1dTg/24αβTg mice had reduced numbers of 24αβ T cells compared with 24αβTg mice, indicating that negative selection increases among type II NKT cells engaged by abundant self-antigen. The residual 24αβ T cells in CD1dTg/24αβTg mice had an altered surface phenotype and acquired a cytokine profile distinct from that of equivalent cells in 24αβTg mice. Interestingly, CD1dTg/24αβTg mice spontaneously developed colitis; adoptive transfer experiments confirmed that type II NKT cells that develop in the context of increased CD1d expression are pathogenic. CONCLUSIONS Aberrant type II NKT cell responses directly contribute to intestinal inflammation in mice, indicating the importance of CD1d expression levels in the development and regulation of type II NKT cells.


Journal of Immunology | 2006

A Cell-Type Specific CD1d Expression Program Modulates Invariant NKT Cell Development and Function

Michael Zimmer; Angela Colmone; Kyrie Felio; Honglin Xu; Averil Ma; Chyung Ru Wang

Invariant NK T (iNKT) cells are a distinct subset of T cells that rapidly produce an array of immunoregulatory cytokines upon activation. Cytokines produced by iNKT cells subsequently transactivate other leukocytes and elicit their respective effector functions. In this way, iNKT cells play a central role in coordinating the development of immune responses in a variety of settings. However, the mechanisms governing the quality of the iNKT cell response elicited remain poorly defined. To address whether changes in the CD1d expression pattern could regulate iNKT cell function, we generated a transgenic (Tg) mouse model in which thymocytes and peripheral T cells express high levels of CD1d (Lck-CD1d Tg+ mice). The expression of CD1d by T cells was sufficient to rescue development of iNKT cells in mice deficient of endogenous CD1d. However, the relative proportions of iNKT cell subsets in Lck-CD1d Tg+ mice were distinctly different from those in wild-type mice, suggesting an altered developmental program. Additionally, iNKT cells were hyporesponsive to antigenic stimulation in vivo. Interestingly, Lck-CD1d Tg+ mice develop liver pathology in the absence of any exogenous manipulation. The results of these studies suggest that changes to the CD1d expression program modulate iNKT cell development and function.


Inflammatory Bowel Diseases | 2013

The Functions of Type I and Type II Natural Killer T Cells in Inflammatory Bowel Diseases

Chia Min Liao; Michael Zimmer; Chyung Ru Wang

Abstract:CD1d-restricted natural killer T (NKT) cells are a distinct subset of T cells that rapidly produce an array of cytokines on activation and play a critical role in regulating various immune responses. NKT cells are classified into 2 groups based on differences in T-cell receptor usage. Type I NKT cells have an invariant T-cell receptor &agr;-chain and are readily detectable by &agr;-galactosylceramide (&agr;-GalCer)–loaded CD1d tetramers. Type II NKT cells have a more diverse T-cell receptor repertoire and cannot be directly identified. Both types of NKT cells and multiple CD1d-expressing cell types are present in the intestine, and their interactions are likely to be modulated by pathogenic and commensal microbes, which in turn contribute to the intestinal immune responses in health and disease. Indeed, in several animal models of inflammatory bowel disease, type I NKT cells have been shown to make both protective and pathogenic contributions to disease. In contrast, in patients with ulcerative colitis, and a mouse model in which both CD1d expression and the frequency of type II NKT cells are increased, type II NKT cells seem to promote intestinal inflammation. In this review, we summarize the present knowledge on the antigen recognition, activation, and function of NKT cells with a particular focus on their role in inflammatory bowel disease and discuss factors that may influence the functional outcome of NKT cell responses in intestinal inflammation.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Polymorphisms in CD1d affect antigen presentation and the activation of CD1d-restricted T cells

Michael Zimmer; Hanh Nguyen; Bin Wang; Honglin Xu; Angela Colmone; Kyrie Felio; Hak Jong Choi; Ping Zhou; Maria-Luisa Alegre; Chyung Ru Wang

CD1 proteins constitute a distinct lineage of antigen-presenting molecules specialized for the presentation of lipid antigens to T cells. In contrast to the extensive sequence polymorphism characteristic of classical MHC molecules, CD1 proteins exhibit limited sequence diversity. Here, we describe the identification and characterization of CD1d alleles in wild-derived mouse strains. We demonstrate that polymorphisms in CD1d affect the presentation of endogenous and exogenous ligands to CD1d-restricted T cells, including type I (Vα14i) and type II (non-Vα14i) natural killer T (NKT) cells. Using congenic mice, we found CD1d polymorphisms affect the thymic selection of type I NKT cells and induce allogeneic T cell responses. Collectively, results from these studies demonstrate a role for polymorphisms in influencing the development and function of CD1d-restricted T cells.


Journal of Medical Primatology | 2002

Changes in dendritic cell migration and activation during SIV infection suggest a role in initial viral spread and eventual immunosuppression.

Simon M. Barratt-Boyes; Michael Zimmer; Larry A. Harshyne

Abstract: Dendritic cells (DC) serve an essential function in linking the innate and acquired immune responses to antigen. Peripheral DC acquire antigen and migrate to draining lymph nodes, where they localize to the T cell‐rich paracortex and function as potent antigen presenting cells. We examined the effects of human immunodeficiency virus (HIV) infection on DC function in vivo using the rhesus macaque/simian immunodeficiency virus (SIV) model. Our data show that during acute SIV infection, Langerhans cell density is reduced in skin and activated DC are increased in proportion in lymph nodes, whereas during AIDS, DC migration from skin and activation within lymph nodes are suppressed. These findings suggest that changes in DC function at different times during the course of infection may serve to promote virus dissemination and persistence: early during infection, DC mobilization may facilitate virus spread to susceptible lymph node T cell populations, whereas depressed DC function during advanced infection could promote generalized immunosuppression.


Nuclear Medicine and Biology | 2015

The feasibility of imaging myocardial ischemic/reperfusion injury using 99mTc-labeled duramycin in a porcine model

Lei Wang; Feng Wang; Wei Fang; Steven E. Johnson; Said H. Audi; Michael Zimmer; Thomas A. Holly; Daniel C. Lee; Bao Zhu; Haibo Zhu; Ming Zhao

UNLABELLED When pathologically externalized, phosphatidylethanolamine (PE) is a potential surrogate marker for detecting tissue injuries. (99m)Tc-labeled duramycin is a peptide-based imaging agent that binds PE with high affinity and specificity. The goal of the current study was to investigate the clearance kinetics of (99m)Tc-labeled duramycin in a large animal model (normal pigs) and to assess its uptake in the heart using a pig model of myocardial ischemia-reperfusion injury. METHODS The clearance and distribution of intravenously injected (99m)Tc-duramycin were characterized in sham-operated animals (n=5). In a closed chest model of myocardial ischemia, coronary occlusion was induced by balloon angioplasty (n=9). (99m)Tc-duramycin (10-15mCi) was injected intravenously at 1hour after reperfusion. SPECT/CT was acquired at 1 and 3hours after injection. Cardiac tissues were analyzed for changes associated with acute cellular injuries. Autoradiography and gamma counting were used to determine radioactivity uptake. For the remaining animals, (99m)Tc-tetrafosamin scan was performed on the second day to identify the infarct site. RESULTS Intravenously injected (99m)Tc-duramycin cleared from circulation predominantly via the renal/urinary tract with an α-phase half-life of 3.6±0.3minutes and β-phase half-life of 179.9±64.7minutes. In control animals, the ratios between normal heart and lung were 1.76±0.21, 1.66±0.22, 1.50±0.20 and 1.75±0.31 at 0.5, 1, 2 and 3hours post-injection, respectively. The ratios between normal heart and liver were 0.88±0.13, 0.80±0.13, 0.82±0.19 and 0.88±0.14. In vivo visualization of focal radioactivity uptake in the ischemic heart was attainable as early as 30min post-injection. The in vivo ischemic-to-normal uptake ratios were 3.57±0.74 and 3.69±0.91 at 1 and 3hours post-injection, respectively. Ischemic-to-lung ratios were 4.89±0.85 and 4.93±0.57; and ischemic-to-liver ratios were 2.05±0.30 to 3.23±0.78. The size of (99m)Tc-duramycin positive myocardium was qualitatively larger than the infarct size delineated by the perfusion defect in (99m)Tc-tetrafosmin uptake. This was consistent with findings from tissue analysis and autoradiography. CONCLUSION (99m)Tc-duramycin was demonstrated, in a large animal model, to have suitable clearance and biodistribution profiles for imaging. The agent has an avid target uptake and a fast background clearance. It is appropriate for imaging myocardial injury induced by ischemia/reperfusion.

Collaboration


Dive into the Michael Zimmer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jayesh Mehta

Northwestern University

View shared research outputs
Top Co-Authors

Avatar

Kyrie Felio

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge