Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michaela Fousová is active.

Publication


Featured researches published by Michaela Fousová.


Materials Science and Engineering: C | 2016

Highly porous, low elastic modulus 316L stainless steel scaffold prepared by selective laser melting

Jaroslav Čapek; Markéta Machová; Michaela Fousová; Jiří Kubásek; Dalibor Vojtěch; Jaroslav Fojt; Eva Jablonská; Jan Lipov; Tomáš Ruml

Recently, porous metallic materials have been extensively studied as candidates for use in the fabrication of scaffolds and augmentations to repair trabecular bone defects, e.g. in surroundings of joint replacements. Fabricating these complex structures by using common approaches (e.g., casting and machining) is very challenging. Therefore, rapid prototyping techniques, such as selective laser melting (SLM), have been investigated for these applications. In this study, we characterized a highly porous (87 vol.%) 316L stainless steel scaffold prepared by SLM. 316L steel was chosen because it presents a biomaterial still widely used for fabrication of joint replacements and, from the practical point of view, use of the same material for fabrication of an augmentation and a joint replacement is beneficial for corrosion prevention. The results are compared to the reported properties of two representative nonporous 316L stainless steels prepared either by SLM or casting and subsequent hot forging. The microstructural and mechanical properties and the surface chemical composition and interaction with the cells were investigated. The studied material exhibited mechanical properties that were similar to those of trabecular bone (compressive modulus of elasticity ~0.15GPa, compressive yield strength ~3MPa) and cytocompatibility after one day that was similar to that of wrought 316L stainless steel, which is a commonly used biomaterial. Based on the obtained results, SLM is a suitable method for the fabrication of porous 316L stainless steel scaffolds with highly porous structures.


Materials Science and Engineering: C | 2016

Influence of surface pre-treatment on the cytocompatibility of a novel biodegradable ZnMg alloy.

Eva Jablonská; Dalibor Vojtěch; Michaela Fousová; Jiří Kubásek; Jan Lipov; Jaroslav Fojt; Tomáš Ruml

Degradable zinc-based alloys with an appropriate corrosion rate are promising materials for the preparation of temporary orthopaedic implants. Previously, we prepared and characterised a novel Zn1.5Mg alloy. This paper is focused on the characterisation of this alloy after a surface pre-treatment, which should mimic processes occurring in vivo. The samples of the Zn1.5Mg alloy were immersed in a simulated body fluid (SBF) at 37°C for 14days in order to form a protective layer of corrosion products. Thereafter, these samples were used for the corrosion rate determination, an indirect in vitro cytotoxicity test, as well as for a direct contact test and were compared with the non-treated samples. The protective layer was characterized by SEM and its chemical composition was determined by EDS and XPS analysis. The corrosion rate was significantly decreased after the pre-incubation. The protective layer of corrosion products was rich in Ca and P. The pre-incubated samples exhibited increased cytocompatibility in the indirect test (metabolic activity of L929 cells was above 70%) and we also observed osteoblast-like cell growth directly on the samples during the contact tests. Thus, the pre-incubation in SBF leading to improved cytocompatibility could represent more appropriate model to in vivo testing.


Materials | 2018

Influence of Inherent Surface and Internal Defects on Mechanical Properties of Additively Manufactured Ti6Al4V Alloy: Comparison between Selective Laser Melting and Electron Beam Melting

Michaela Fousová; Dalibor Vojtěch; Karel Doubrava; Matěj Daniel; Chiu-Feng Lin

Additive manufacture (AM) appears to be the most suitable technology to produce sophisticated, high quality, lightweight parts from Ti6Al4V alloy. However, the fatigue life of AM parts is of concern. In our study, we focused on a comparison of two techniques of additive manufacture—selective laser melting (SLM) and electron beam melting (EBM)—in terms of the mechanical properties during both static and dynamic loading. All of the samples were untreated to focus on the influence of surface condition inherent to SLM and EBM. The EBM samples were studied in the as-built state, while SLM was followed by heat treatment. The resulting similarity of microstructures led to comparable mechanical properties in tension, but, due to differences in surface roughness and specific internal defects, the fatigue strength of the EBM samples reached only half the value of the SLM samples. Higher surface roughness that is inherent to EBM contributed to multiple initiations of fatigue cracks, while only one crack initiated on the SLM surface. Also, facets that were formed by an intergranular cleavage fracture were observed in the EBM samples.


IOP Conference Series: Materials Science and Engineering | 2017

3D printed porous stainless steel for potential use in medicine

Michaela Fousová; Jiří Kubásek; Dalibor Vojtěch; Jaroslav Fojt; J Čapek

3D printing technologies like Selective Laser Melting (SLM) or Electron Beam Melting (EBM) produce components of very complicated shapes from various kinds of materials. In this work a highly porous (porosity of almost 90 vol. %) stainless steel component was manufactured by SLM. The material was characterized in terms of structure, surface chemistry and mechanical properties. It was observed that mechanical properties of the material were similar to those of trabecular human bone. The tests realized in this work confirmed suitability of the porous material prepared by SLM for the use in medicine, for example, for scaffolds designed to repair bone defects.


Materials | 2017

Novel Approach in the Use of Plasma Spray: Preparation of Bulk Titanium for Bone Augmentations

Michaela Fousová; Dalibor Vojtech; Eva Jablonská; Jaroslav Fojt; Jan Lipov

Thermal plasma spray is a common, well-established technology used in various application fields. Nevertheless, in our work, this technology was employed in a completely new way; for the preparation of bulk titanium. The aim was to produce titanium with properties similar to human bone to be used for bone augmentations. Titanium rods sprayed on a thin substrate wire exerted a porosity of about 15%, which yielded a significant decrease of Young′s modulus to the bone range and provided rugged topography for enhanced biological fixation. For the first verification of the suitability of the selected approach, tests of the mechanical properties in terms of compression, bending, and impact were carried out, the surface was characterized, and its compatibility with bone cells was studied. While preserving a high enough compressive strength of 628 MPa, the elastic modulus reached 11.6 GPa, thus preventing a stress-shielding effect, a generally known problem of implantable metals. U-2 OS and Saos-2 cells derived from bone osteosarcoma grown on the plasma-sprayed surface showed good viability.


Materials Science and Engineering: C | 2018

Corrosion behaviour and cell interaction of Ti-6Al-4V alloy prepared by two techniques of 3D printing

Jaroslav Fojt; Michaela Fousová; Eva Jablonská; Ludek Joska; Vojtech Hybasek; Eva Pruchova; Dalibor Vojtech; Tomáš Ruml

3D printing seems to be the technology of the future for the preparation of metallic implants. For such applications, corrosion behaviour is pivotal. However, little is published on this topic and with inconsistent results. Therefore, we carried out a complex study in which we compared two techniques of the 3D printing technology - selective laser melting and electron beam melting. The corrosion behaviour was studied in physiological solution by standard electrochemical techniques and susceptibility to localised corrosion was estimated too. All samples showed typical passive behaviour. Localised corrosion was shown to be possible on the original as-printed surfaces. Corrosion experiments were repeated tree times. To reveal possible negative effects of 3D printing on cytocompatibility, direct in vitro tests were performed with U-2 OS cells. The cells showed good viability and proliferation, but their growth was impeded by surface unevenness. Our results suggest that both techniques are suitable for implants production. Statistical evaluation was performed by ANOVA followed by Tukeys test.


Materials | 2018

The Use of Selective Laser Melting to Increase the Performance of AlSi9Cu3Fe Alloy

Michaela Fousová; Drahomir Dvorsky; Marek Vronka; Dalibor Vojtech; Pavel Lejček

For the first time, the comprehensive characterization of the additively manufactured AlSi9Cu3Fe alloy is reported in this paper. Conventionally, the AlSi9Cu3(Fe) alloy is prepared by high-pressure die casting (HPDC), but this technology largely does not offer such opportunities as additive manufacturing (AM) does, especially in the design of new lightweight parts. In the present paper, testing samples were prepared by selective laser melting (SLM), one of the AM technologies, and characterized in terms of their microstructure (by means of light microscopy, scanning electron microscopy and transmission electron microscopy in combination with analytical techniques for evaluation of chemical and phase composition) and mechanical properties (static tension, compression, and hardness). All the characteristics were compared with the HPDC reference material. Our study showed an excellent improvement both in strength (374 ± 11 MPa compared to 257 ± 17 MPa) and plasticity (1.9 ± 0.2% compared to 1.2 ± 0.5%) of the material thanks to its very fine and distinctive microstructure.


Key Engineering Materials | 2018

Metallic Materials Prepared by Selective Laser Melting: Part Orientation Issue

Michaela Fousová; Drahomír Dvorský; Pavel Lejček; Dalibor Vojtěch

This paper shows part orientation issue in the process of Selective Laser Melting (SLM) at four examples of metallic materials (Fe, stainless steel 316L, TiAl6V4 alloy and AlSi11Mg alloy). Horizontally and vertically oriented samples differ in their mechanical properties, especially in plasticity. The causes of these differences are related to a thermal history, microstructural features and porosity. Depending on a particular material, individual effects are manifested under different extents.


Solid State Phenomena | 2017

Metallographic and Fractographic Evaluation of 3D-Printed Titanium Samples to Eliminate Unsatisfactory Mechanical Properties

Michaela Fousová; Tereza Stejskalova; Dalibor Vojtěch

Czech company ProSpon spol. s r.o. has introduced 3D printing technology in its production in 2015. This company operates in the field of development, manufacture and distribution of medical implants and instruments for orthopedics, traumatology and surgery. Therefore, the current intention is to employ Selective Laser Melting (SLM) technology for production of complex and patient-specific implants from titanium alloy Ti-6Al-4V. Nevertheless, first series of produced test specimens suffered from very low plasticity insufficient for the intended application. The reduction in elongation was almost 7fold compared to conventionally used wrought standard. From that reason, specimens were subjected to fractographic evaluation of fracture surfaces, but also metallographic evaluation. The main cause of the identified problem turned out to be porosity originating from inappropriate set-up of the machine. After the adjustment of process parameters new series of specimens were prepared in which the porosity was already significantly lower. Consequently, mechanical properties reached higher and better values.


Materials Science Forum | 2017

Material Investigation of Bronze Artefacts from the Late Bronze Age

Šárka Msallamová; Kateřina Šálková; Michaela Fousová; Drahomír Dvorský; Jaroslav Jiřík; Tereza Šálková; Tomáš Hiltscher; Daniel Hlásek; Jan John; Martin Pták; Jiří Dohnal; Zdeněk Jáně

The study deals with the material survey of a raw material, bronze axe and sickle from the Late Bronze Age. Artefacts were chosen from a set of about thirty objects, which were found in a ceramic pot near to Křenovice in the South Bohemia. The ancient technology of the axe and the sickle production was determined by the evaluating of structural properties using prepared metallographic sections. The chemical composition of a metal matrix and intermediate phases were determined using a scanning electron microscope with an EDS analyzer and X-ray fluorescence. The corrosion products of the artefacts were analyzed by X-ray diffraction. The results showed that the axe was made from partly wrought bronze (CuSn10) processed by subsequent recrystallization annealing. The bronze sickle (CuSn11) was a cast without any further mechanical processing or heat treatment. The material of the a raw material was found to be an arsenical copper alloy (CuAs1), which was probably used as a starting material for the bronze alloy production.

Collaboration


Dive into the Michaela Fousová's collaboration.

Top Co-Authors

Avatar

Dalibor Vojtěch

Institute of Chemical Technology in Prague

View shared research outputs
Top Co-Authors

Avatar

Dalibor Vojtech

Institute of Chemical Technology in Prague

View shared research outputs
Top Co-Authors

Avatar

Jaroslav Fojt

Institute of Chemical Technology in Prague

View shared research outputs
Top Co-Authors

Avatar

Eva Jablonská

Institute of Chemical Technology in Prague

View shared research outputs
Top Co-Authors

Avatar

Jan Lipov

Institute of Chemical Technology in Prague

View shared research outputs
Top Co-Authors

Avatar

Jiří Kubásek

Institute of Chemical Technology in Prague

View shared research outputs
Top Co-Authors

Avatar

Tomáš Ruml

Institute of Chemical Technology in Prague

View shared research outputs
Top Co-Authors

Avatar

Drahomír Dvorský

Institute of Chemical Technology in Prague

View shared research outputs
Top Co-Authors

Avatar

Pavel Lejček

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Eva Pruchova

Institute of Chemical Technology in Prague

View shared research outputs
Researchain Logo
Decentralizing Knowledge