Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michaela Kuhn is active.

Publication


Featured researches published by Michaela Kuhn.


Journal of Clinical Investigation | 2003

Pressure-independent cardiac hypertrophy in mice with cardiomyocyte-restricted inactivation of the atrial natriuretic peptide receptor guanylyl cyclase-A

Rita Holtwick; Martin van Eickels; Boris V. Skryabin; Hideo Baba; Alexander Bubikat; Frank Begrow; Michael D. Schneider; David L. Garbers; Michaela Kuhn

Cardiac hypertrophy is a common and often lethal complication of arterial hypertension. Atrial natriuretic peptide (ANP) has been postulated to exert local antihypertrophic effects in the heart. Thus, a loss of function of the ANP receptor guanylyl cyclase-A (GC-A) might contribute to the increased propensity to cardiac hypertrophy, although a causative role in vivo has not been definitively demonstrated. To test whether local ANP modulates cardiomyocyte growth, we inactivated the GC-A gene selectively in cardiomyocytes by homologous loxP/Cre-mediated recombination. Thereby we have circumvented the systemic, hypertensive phenotype associated with germline inactivation of GC-A. Mice with cardiomyocyte-restricted GC-A deletion exhibited mild cardiac hypertrophy, markedly increased mRNA expression of cardiac hypertrophy markers such as ANP (fivefold), alpha-skeletal actin (1.7-fold), and beta-myosin heavy chain (twofold), and increased systemic circulating ANP levels. Their blood pressure was 7-10 mmHg below normal, probably because of the elevated systemic levels and endocrine actions of ANP. Furthermore, cardiac hypertrophic responses to aortic constriction were enhanced and accompanied by marked deterioration of cardiac function. This phenotype is consistent with a local function of the ANP/GC-A system to moderate the molecular program of cardiac hypertrophy.


Circulation Research | 2003

Structure, Regulation, and Function of Mammalian Membrane Guanylyl Cyclase Receptors, With a Focus on Guanylyl Cyclase-A

Michaela Kuhn

Besides soluble guanylyl cyclase (GC), the receptor for NO, there are at least seven plasma membrane enzymes that synthesize the second-messenger cGMP. All membrane GCs (GC-A through GC-G) share a basic topology, which consists of an extracellular ligand binding domain, a short transmembrane region, and an intracellular domain that contains the catalytic (GC) region. Although the presence of the extracellular domain suggests that all these enzymes function as receptors, specific ligands have been identified for only three of them (GC-A through GC-C). GC-A mediates the endocrine effects of atrial and B-type natriuretic peptides regulating arterial blood pressure and volume homeostasis and also local antihypertrophic actions in the heart. GC-B is a specific receptor for C-type natriuretic peptide, having more of a paracrine function in vascular regeneration and endochondral ossification. GC-C mediates the effects of guanylin and uroguanylin on intestinal electrolyte and water transport and on epithelial cell growth and differentiation. GC-E and GC-F are colocalized within the same photoreceptor cells of the retina and have an important role in phototransduction. Finally, the functions of GC-D (located in the olfactory neuroepithelium) and GC-G (expressed in highest amounts in lung, intestine, and skeletal muscle) are completely unknown. This review discusses the structure and functions of membrane GCs, with special emphasis on the physiological endocrine and cardiac functions of GC-A, the regulation of hormone-dependent GC-A activity, and the relevance of alterations of the atrial natriuretic peptide/GC-A system to cardiovascular diseases.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Smooth muscle-selective deletion of guanylyl cyclase-A prevents the acute but not chronic effects of ANP on blood pressure

Rita Holtwick; Michael Gotthardt; Boris V. Skryabin; Martin Steinmetz; Regine Potthast; Bernd Zetsche; Robert E. Hammer; Joachim Herz; Michaela Kuhn

Atrial natriuretic peptide (ANP) is an important regulator of arterial blood pressure. The mechanisms mediating its hypotensive effects are complex and involve the inhibition of the sympathetic and renin-angiotensin-aldosterone (RAA) systems, increased diuresis/natriuresis, vasodilation, and enhanced vascular permeability. In particular, the contribution of the direct vasodilating effect of ANP to the hypotensive actions remains controversial, because variable levels of the ANP receptor, guanylyl cyclase A (GC-A), are expressed in different vascular beds. The objective of our study was to determine whether a selective deletion of GC-A in vascular smooth muscle would affect the hypotensive actions of ANP. We first created a mutant allele of mouse GC-A by flanking a required exon with loxP sequences. Crossing floxed GC-A with SM22-Cre transgene mice expressing Cre recombinase in smooth muscle cells (SMC) resulted in mice in which vascular GC-A mRNA expression was reduced by ≈80%. Accordingly, the relaxing effects of ANP on isolated vessels from these mice were abolished; despite this fact, chronic arterial blood pressure of awake SMC GC-A KO mice was normal. Infusion of ANP caused immediate decreases in blood pressure in floxed GC-A but not in SMC GC-A knockout mice. Furthermore, acute vascular volume expansion, which causes release of cardiac ANP, did not affect resting blood pressure of floxed GC-A mice, but rapidly and significantly increased blood pressure of SMC GC-A knockout mice. We conclude that vascular GC-A is dispensable in the chronic and critical in the acute moderation of arterial blood pressure by ANP.


Basic Research in Cardiology | 2004

Molecular physiology of natriuretic peptide signalling

Michaela Kuhn

Abstract.The natriuretic peptide family consists of three homologous members, atrial (ANP), B-type (BNP) and C-type natriuretic peptides (CNP). These small peptides activate specific membrane-bound guanylyl cyclase (GC) receptors (GC-A and GC-B), thus modulating cellular functions via the intracellular second messenger, cyclic GMP. Since the original discovery of cardiac ANP more than two decades ago, the application of gene targeting technology in mice has provided new valuable information regarding the molecular physiology and diverse biological functions of natriuretic peptides and their receptors. The GC-A and ANP gene knockouts demonstrated that this signalling system is not only essential in the maintenance of normal blood pressure and volume, but also has local, growth-moderating functions within the heart itself. Disruption of the genes encoding BNP, CNP or the CNP-receptor, GC-B, demonstrated that these “natriuretic peptides” are in fact unlikely to physiologically regulate renal sodium excretion but instead may exert important autocrine/paracrine cGMP-mediated effects on cellular proliferation and differentiation in different tissues. Notably, the intestinal peptide uroguanylin, which activates a third guanylyl cyclase (GC-C), exerts diuretic/natriuretic activity and links the intestine and kidney in an endocrine way to modulate renal function in response to oral salt load. Reviewed here is the physiology and biochemistry of natriuretic peptides and their guanylyl cyclase receptors, with special focus on the information gained to date from targeted disruption of specific members of this peptide family, their receptors, or effector molecules in the murine system.


Journal of Clinical Investigation | 2005

Vascular endothelium is critically involved in the hypotensive and hypovolemic actions of atrial natriuretic peptide

Karim Sabrane; Markus N. Kruse; Larissa Fabritz; Bernd Zetsche; Danuta Mitko; Boris V. Skryabin; Melanie Zwiener; Hideo Baba; Masashi Yanagisawa; Michaela Kuhn

Atrial natriuretic peptide (ANP), via its vasodilating and diuretic effects, has an important physiological role in the maintenance of arterial blood pressure and volume. Its guanylyl cyclase-A (GC-A) receptor is highly expressed in vascular endothelium, but the functional relevance of this is controversial. To dissect the endothelium-mediated actions of ANP in vivo, we inactivated the GC-A gene selectively in endothelial cells by homologous loxP/Tie2-Cre-mediated recombination. Notably, despite full preservation of the direct vasodilating effects of ANP, mice with endothelium-restricted deletion of the GC-A gene (EC GC-A KO) exhibited significant arterial hypertension and cardiac hypertrophy. Echocardiographic and Doppler flow evaluations together with the Evans blue dilution technique showed that the total plasma volume of EC GC-A KO mice was increased by 11-13%, even under conditions of normal dietary salt intake. Infusion of ANP caused immediate increases in hematocrit in control but not in EC GC-A KO mice, which indicated that ablation of endothelial GC-A completely prevented the acute contraction of intravascular volume produced by ANP. Furthermore, intravenous ANP acutely enhanced the rate of clearance of radio-iodinated albumin from the circulatory system in control but not in EC GC-A KO mice. We conclude that GC-A-mediated increases in endothelial permeability are critically involved in the hypovolemic, hypotensive actions of ANP.


Circulation | 2005

Enhanced activity of the myocardial Na+/H+ exchanger NHE-1 contributes to cardiac remodeling in atrial natriuretic peptide receptor-deficient mice.

Ana Kilic; Ana Velic; Leon J. De Windt; Larissa Fabritz; Melanie Voss; Danuta Mitko; Melanie Zwiener; Hideo Baba; Martin van Eickels; Eberhard Schlatter; Michaela Kuhn

Background— Atrial natriuretic peptide (ANP), through its guanylyl cyclase-A (GC-A) receptor, not only is critically involved in the endocrine regulation of arterial blood pressure but also locally moderates cardiomyocyte growth. The mechanisms underlying the antihypertrophic effects of ANP remain largely uncharacterized. We examined the contribution of the Na+/H+ exchanger NHE-1 to cardiac remodeling in GC-A–deficient (GC-A−/−) mice. Methods and Results— Fluorometric measurements in isolated adult cardiomyocytes demonstrated that cardiac hypertrophy in GC-A−/− mice was associated with enhanced NHE-1 activity, alkalinization of intracellular pH, and increased Ca2+ levels. Chronic treatment of GC-A−/− mice with the NHE-1 inhibitor cariporide normalized cardiomyocyte pH and Ca2+ levels and regressed cardiac hypertrophy and fibrosis, despite persistent arterial hypertension. To characterize the molecular pathways driving cardiac hypertrophy in GC-A−/− mice, we evaluated the activity of 4 prohypertrophic signaling pathways: the mitogen-activated protein kinases (MAPK), the serine-threonine kinase Akt, calcineurin, and Ca2+/calmodulin-dependent kinase II (CaMKII). The results demonstrate that all 4 pathways were activated in GC-A−/− mice, but only CaMKII and Akt activity regressed during reversal of the hypertrophic phenotype by cariporide treatment. In contrast, the MAPK and calcineurin/NFAT signaling pathways remained activated during regression of hypertrophy. Conclusions— On the basis of these results, we conclude that the ANP/GC-A system moderates the cardiac growth response to pressure overload by preventing excessive activation of NHE-1 and subsequent increases in cardiomyocyte intracellular pH, Ca2+, and CaMKII as well as Akt activity.


Handbook of experimental pharmacology | 2009

Function and Dysfunction of Mammalian Membrane Guanylyl Cyclase Receptors: Lessons from Genetic Mouse Models and Implications for Human Diseases

Michaela Kuhn

Besides soluble guanylyl cyclase (GC), the receptor for NO, there are seven plasma membrane forms of guanylyl cyclase (GC) receptors, enzymes that synthesize the second-messenger cyclic GMP (cGMP). All membrane GCs (GC-A to GC-G) share a basic topology, which consists of an extracellular ligand binding domain, a short transmembrane region, and an intracellular domain that contains the catalytic (GC) region. Although the presence of the extracellular domain suggests that all these enzymes function as receptors, specific ligands have been identified for only four of them (GC-A through GC-D). GC-A mediates the endocrine effects of atrial and B-type natriuretic peptides regulating arterial blood pressure and volume homeostasis and also local antihypertrophic and antifibrotic actions in the heart. GC-B, the specific receptor for C-type natriuretic peptide, has a critical role in endochondral ossification. GC-C mediates the effects of guanylin and uroguanylin on intestinal electrolyte and water transport and epithelial cell growth and differentiation. GC-E and GC-F are colocalized within the same photoreceptor cells of the retina and have an important role in phototransduction. Finally, GC-D and GC-G appear to be pseudogenes in the human. In rodents, GC-D is exclusively expressed in the olfactory neuroepithelium, with chemosensory functions. GC-G is the last member of the membrane GC form to be identified. No other mammalian transmembrane GCs are predicted on the basis of gene sequence repositories. In contrast to the other orphan receptor GCs, GC-G has a broad tissue distribution in rodents, including the lung, intestine, kidney, skeletal muscle, and sperm, raising the possibility that there is another yet to be discovered family of cGMP-generating ligands. This chapter reviews the structure and functions of membrane GCs, with special focus on the insights gained to date from genetically modified mice and the role of alterations of these ligand/receptor systems in human diseases.


Journal of Clinical Investigation | 2009

The natriuretic peptide/guanylyl cyclase--a system functions as a stress-responsive regulator of angiogenesis in mice.

Michaela Kuhn; Katharina Völker; Kristine Schwarz; Javier Carbajo-Lozoya; Ulrich Flögel; Christoph Jacoby; Jörg Stypmann; Martin van Eickels; Stepan Gambaryan; Michael Hartmann; Matthias Werner; Thomas Wieland; Jürgen Schrader; Hideo Baba

Cardiac atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) modulate blood pressure and volume by activation of the receptor guanylyl cyclase-A (GC-A) and subsequent intracellular cGMP formation. Here we report what we believe to be a novel function of these peptides as paracrine regulators of vascular regeneration. In mice with systemic deletion of the GC-A gene, vascular regeneration in response to critical hind limb ischemia was severely impaired. Similar attenuation of ischemic angiogenesis was observed in mice with conditional, endothelial cell-restricted GC-A deletion (here termed EC GC-A KO mice). In contrast, smooth muscle cell-restricted GC-A ablation did not affect ischemic neovascularization. Immunohistochemistry and RT-PCR revealed BNP expression in activated satellite cells within the ischemic muscle, suggesting that local BNP elicits protective endothelial effects. Since within the heart, BNP is mainly induced in cardiomyocytes by mechanical load, we investigated whether the natriuretic peptide/GC-A system also regulates angiogenesis accompanying load-induced cardiac hypertrophy. EC GC-A KO hearts showed diminished angiogenesis, mild fibrosis, and diastolic dysfunction. In vitro BNP/GC-A stimulated proliferation and migration of cultured microvascular endothelia by activating cGMP-dependent protein kinase I and phosphorylating vasodilator-stimulated phosphoprotein and p38 MAPK. We therefore conclude that BNP, produced by activated satellite cells within ischemic skeletal muscle or by cardiomyocytes in response to pressure load, regulates the regeneration of neighboring endothelia via GC-A. This paracrine communication might be critically involved in coordinating muscle regeneration/hypertrophy and angiogenesis.


Physiological Reviews | 2016

Molecular Physiology of Membrane Guanylyl Cyclase Receptors

Michaela Kuhn

cGMP controls many cellular functions ranging from growth, viability, and differentiation to contractility, secretion, and ion transport. The mammalian genome encodes seven transmembrane guanylyl cyclases (GCs), GC-A to GC-G, which mainly modulate submembrane cGMP microdomains. These GCs share a unique topology comprising an extracellular domain, a short transmembrane region, and an intracellular COOH-terminal catalytic (cGMP synthesizing) region. GC-A mediates the endocrine effects of atrial and B-type natriuretic peptides regulating arterial blood pressure/volume and energy balance. GC-B is activated by C-type natriuretic peptide, stimulating endochondral ossification in autocrine way. GC-C mediates the paracrine effects of guanylins on intestinal ion transport and epithelial turnover. GC-E and GC-F are expressed in photoreceptor cells of the retina, and their activation by intracellular Ca(2+)-regulated proteins is essential for vision. Finally, in the rodent system two olfactorial GCs, GC-D and GC-G, are activated by low concentrations of CO2and by peptidergic (guanylins) and nonpeptidergic odorants as well as by coolness, which has implications for social behaviors. In the past years advances in human and mouse genetics as well as the development of sensitive biosensors monitoring the spatiotemporal dynamics of cGMP in living cells have provided novel relevant information about this receptor family. This increased our understanding of the mechanisms of signal transduction, regulation, and (dys)function of the membrane GCs, clarified their relevance for genetic and acquired diseases and, importantly, has revealed novel targets for therapies. The present review aims to illustrate these different features of membrane GCs and the main open questions in this field.


Molecular Endocrinology | 2009

Rapid Regulation of KATP Channel Activity by 17β-Estradiol in Pancreatic β-Cells Involves the Estrogen Receptor β and the Atrial Natriuretic Peptide Receptor

Sergi Soriano; Ana B. Ropero; Paloma Alonso-Magdalena; Cristina Ripoll; Ivan Quesada; Birgit Gassner; Michaela Kuhn; Jan-Åke Gustafsson; Angel Nadal

The ATP-sensitive potassium (K(ATP)) channel is a key molecule involved in glucose-stimulated insulin secretion. The activity of this channel regulates beta-cell membrane potential, glucose- induced [Ca(2+)](i) signals, and insulin release. In this study, the rapid effect of physiological concentrations of 17beta-estradiol (E2) on K(ATP) channel activity was studied in intact beta-cells by use of the patch-clamp technique. When cells from wild-type (WT) mice were used, 1 nm E2 rapidly reduced K(ATP) channel activity by 60%. The action of E2 on K(ATP) channel was not modified in beta-cells from ERalpha-/- mice, yet it was significantly reduced in cells from ERbeta-/- mice. The effect of E2 was mimicked by the ERbeta agonist 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN). Activation of ERbeta by DPN enhanced glucose-induced Ca(2+) signals and insulin release. Previous evidence indicated that the acute inhibitory effects of E2 on K(ATP) channel activity involve cyclic GMP and cyclic GMP-dependent protein kinase. In this study, we used beta-cells from mice with genetic ablation of the membrane guanylate cyclase A receptor for atrial natriuretic peptide (also called the atrial natriuretic peptide receptor) (GC-A KO mice) to demonstrate the involvement of this membrane receptor in the rapid E2 actions triggered in beta-cells. E2 rapidly inhibited K(ATP) channel activity and enhanced insulin release in islets from WT mice but not in islets from GC-A KO mice. In addition, DPN reduced K(ATP) channel activity in beta-cells from WT mice, but not in beta-cells from GC-A KO mice. This work unveils a new role for ERbeta as an insulinotropic molecule that may have important physiological and pharmacological implications.

Collaboration


Dive into the Michaela Kuhn's collaboration.

Top Co-Authors

Avatar

Hideo Baba

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wen Chen

University of Würzburg

View shared research outputs
Top Co-Authors

Avatar

Stepan Gambaryan

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge