Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Boris V. Skryabin is active.

Publication


Featured researches published by Boris V. Skryabin.


Current Biology | 2002

The Ion Channel Polycystin-2 Is Required for Left-Right Axis Determination in Mice

Petra Pennekamp; Christina Karcher; Anja Fischer; Axel Schweickert; Boris V. Skryabin; Jürgen Horst; Martin Blum; Bernd Dworniczak

Generation of laterality depends on a pathway which involves the asymmetrically expressed genes nodal, Ebaf, Leftb, and Pitx2. In mouse, node monocilia are required upstream of the nodal cascade. In chick and frog, gap junctions are essential prior to node/organizer formation. It was hypothesized that differential activity of ion channels gives rise to unidirectional transfer through gap junctions, resulting in asymmetric gene expression. PKD2, which if mutated causes autosomal dominant polycystic kidney disease (ADPKD) in humans, encodes the calcium release channel polycystin-2. We have generated a knockout allele of Pkd2 in mouse. In addition to malformations described previously, homozygous mutant embryos showed right pulmonary isomerism, randomization of embryonic turning, heart looping, and abdominal situs. Leftb and nodal were not expressed in the left lateral plate mesoderm (LPM), and Ebaf was absent from floorplate. Pitx2 was bilaterally expressed in posterior LPM but absent anteriorly. Pkd2 was ubiquitously expressed at headfold and early somite stages, with higher levels in floorplate and notochord. The embryonic midline, however, was present, and normal levels of Foxa2 and shh were expressed, suggesting that polycystin-2 acts downstream or in parallel to shh and upstream of the nodal cascade.


Journal of Clinical Investigation | 2003

Pressure-independent cardiac hypertrophy in mice with cardiomyocyte-restricted inactivation of the atrial natriuretic peptide receptor guanylyl cyclase-A

Rita Holtwick; Martin van Eickels; Boris V. Skryabin; Hideo Baba; Alexander Bubikat; Frank Begrow; Michael D. Schneider; David L. Garbers; Michaela Kuhn

Cardiac hypertrophy is a common and often lethal complication of arterial hypertension. Atrial natriuretic peptide (ANP) has been postulated to exert local antihypertrophic effects in the heart. Thus, a loss of function of the ANP receptor guanylyl cyclase-A (GC-A) might contribute to the increased propensity to cardiac hypertrophy, although a causative role in vivo has not been definitively demonstrated. To test whether local ANP modulates cardiomyocyte growth, we inactivated the GC-A gene selectively in cardiomyocytes by homologous loxP/Cre-mediated recombination. Thereby we have circumvented the systemic, hypertensive phenotype associated with germline inactivation of GC-A. Mice with cardiomyocyte-restricted GC-A deletion exhibited mild cardiac hypertrophy, markedly increased mRNA expression of cardiac hypertrophy markers such as ANP (fivefold), alpha-skeletal actin (1.7-fold), and beta-myosin heavy chain (twofold), and increased systemic circulating ANP levels. Their blood pressure was 7-10 mmHg below normal, probably because of the elevated systemic levels and endocrine actions of ANP. Furthermore, cardiac hypertrophic responses to aortic constriction were enhanced and accompanied by marked deterioration of cardiac function. This phenotype is consistent with a local function of the ANP/GC-A system to moderate the molecular program of cardiac hypertrophy.


Molecular and Cellular Biology | 2003

Loss of S100A9 (MRP14) Results in Reduced Interleukin-8-Induced CD11b Surface Expression, a Polarized Microfilament System, and Diminished Responsiveness to Chemoattractants In Vitro

Marie-Pierre Manitz; Basil Horst; Stephan Seeliger; Anke Strey; Boris V. Skryabin; Matthias Gunzer; Werner Frings; Frank Schönlau; J. Roth; Clemens Sorg; Wolfgang Nacken

ABSTRACT The S100A9 (MRP14) protein is abundantly expressed in myeloid cells and has been associated with various inflammatory diseases. The S100A9-deficient mice described here were viable, fertile, and generally of healthy appearance. The myelopoietic potential of the S100A9-null bone marrow was normal. S100A8, the heterodimerization partner of S100A9 was not detectable in peripheral blood cells, suggesting that even a deficiency in both S100A8 and S100A9 proteins was compatible with viable and mature neutrophils. Surprisingly, the invasion of S100A9-deficient leukocytes into the peritoneum and into the skin in vivo was indistinguishable from that in wild-type mice. However, stimulation of S100A9-deficient neutrophils with interleukin-8 in vitro failed to provoke an up-regulation of CD11b. Migration upon a chemotactic stimulus through an endothelial monolayer was markedly diminished in S100A9-deficient neutrophils. Attenuated chemokinesis of the S100A9-deficient neutrophils was observed by using a three-dimensional collagen matrix migration assay. The altered migratory behavior was associated with a microfilament system that was highly polarized in unstimulated S100A9-deficient neutrophils. Our data suggest that loss of the calcium-binding S100A9 protein reduces the responsiveness of the neutrophils upon chemoattractant stimuli at least in vitro. Alternative pathways for neutrophil emigration may be responsible for the lack of any effect in the two in vivo models we have investigated so far.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Smooth muscle-selective deletion of guanylyl cyclase-A prevents the acute but not chronic effects of ANP on blood pressure

Rita Holtwick; Michael Gotthardt; Boris V. Skryabin; Martin Steinmetz; Regine Potthast; Bernd Zetsche; Robert E. Hammer; Joachim Herz; Michaela Kuhn

Atrial natriuretic peptide (ANP) is an important regulator of arterial blood pressure. The mechanisms mediating its hypotensive effects are complex and involve the inhibition of the sympathetic and renin-angiotensin-aldosterone (RAA) systems, increased diuresis/natriuresis, vasodilation, and enhanced vascular permeability. In particular, the contribution of the direct vasodilating effect of ANP to the hypotensive actions remains controversial, because variable levels of the ANP receptor, guanylyl cyclase A (GC-A), are expressed in different vascular beds. The objective of our study was to determine whether a selective deletion of GC-A in vascular smooth muscle would affect the hypotensive actions of ANP. We first created a mutant allele of mouse GC-A by flanking a required exon with loxP sequences. Crossing floxed GC-A with SM22-Cre transgene mice expressing Cre recombinase in smooth muscle cells (SMC) resulted in mice in which vascular GC-A mRNA expression was reduced by ≈80%. Accordingly, the relaxing effects of ANP on isolated vessels from these mice were abolished; despite this fact, chronic arterial blood pressure of awake SMC GC-A KO mice was normal. Infusion of ANP caused immediate decreases in blood pressure in floxed GC-A but not in SMC GC-A knockout mice. Furthermore, acute vascular volume expansion, which causes release of cardiac ANP, did not affect resting blood pressure of floxed GC-A mice, but rapidly and significantly increased blood pressure of SMC GC-A knockout mice. We conclude that vascular GC-A is dispensable in the chronic and critical in the acute moderation of arterial blood pressure by ANP.


Journal of Clinical Investigation | 2005

Vascular endothelium is critically involved in the hypotensive and hypovolemic actions of atrial natriuretic peptide

Karim Sabrane; Markus N. Kruse; Larissa Fabritz; Bernd Zetsche; Danuta Mitko; Boris V. Skryabin; Melanie Zwiener; Hideo Baba; Masashi Yanagisawa; Michaela Kuhn

Atrial natriuretic peptide (ANP), via its vasodilating and diuretic effects, has an important physiological role in the maintenance of arterial blood pressure and volume. Its guanylyl cyclase-A (GC-A) receptor is highly expressed in vascular endothelium, but the functional relevance of this is controversial. To dissect the endothelium-mediated actions of ANP in vivo, we inactivated the GC-A gene selectively in endothelial cells by homologous loxP/Tie2-Cre-mediated recombination. Notably, despite full preservation of the direct vasodilating effects of ANP, mice with endothelium-restricted deletion of the GC-A gene (EC GC-A KO) exhibited significant arterial hypertension and cardiac hypertrophy. Echocardiographic and Doppler flow evaluations together with the Evans blue dilution technique showed that the total plasma volume of EC GC-A KO mice was increased by 11-13%, even under conditions of normal dietary salt intake. Infusion of ANP caused immediate increases in hematocrit in control but not in EC GC-A KO mice, which indicated that ablation of endothelial GC-A completely prevented the acute contraction of intravascular volume produced by ANP. Furthermore, intravenous ANP acutely enhanced the rate of clearance of radio-iodinated albumin from the circulatory system in control but not in EC GC-A KO mice. We conclude that GC-A-mediated increases in endothelial permeability are critically involved in the hypovolemic, hypotensive actions of ANP.


PLOS Genetics | 2007

Deletion of the MBII-85 snoRNA Gene Cluster in Mice Results in Postnatal Growth Retardation

Boris V. Skryabin; Leonid V. Gubar; Birte Seeger; Jana Pfeiffer; Sergej Handel; Thomas Robeck; Elena Karpova; Timofey S. Rozhdestvensky; Jürgen Brosius

Prader-Willi syndrome (PWS [MIM 176270]) is a neurogenetic disorder characterized by decreased fetal activity, muscular hypotonia, failure to thrive, short stature, obesity, mental retardation, and hypogonadotropic hypogonadism. It is caused by the loss of function of one or more imprinted, paternally expressed genes on the proximal long arm of chromosome 15. Several potential PWS mouse models involving the orthologous region on chromosome 7C exist. Based on the analysis of deletions in the mouse and gene expression in PWS patients with chromosomal translocations, a critical region (PWScr) for neonatal lethality, failure to thrive, and growth retardation was narrowed to the locus containing a cluster of neuronally expressed MBII-85 small nucleolar RNA (snoRNA) genes. Here, we report the deletion of PWScr. Mice carrying the maternally inherited allele (PWScrm−/p+) are indistinguishable from wild-type littermates. All those with the paternally inherited allele (PWScrm+/p−) consistently display postnatal growth retardation, with about 15% postnatal lethality in C57BL/6, but not FVB/N crosses. This is the first example in a multicellular organism of genetic deletion of a C/D box snoRNA gene resulting in a pronounced phenotype.


Behavioural Brain Research | 2004

Role of a neuronal small non-messenger RNA: behavioural alterations in BC1 RNA-deleted mice

Lars Lewejohann; Boris V. Skryabin; Norbert Sachser; Prehn C; Heiduschka P; Thanos S; Ursula Jordan; Dell'Omo G; Alexei L. Vyssotski; Pleskacheva Mg; Hans-Peter Lipp; Henri Tiedge; Jürgen Brosius; Helmut Prior

BC1 RNA is a small non-messenger RNA common in dendritic microdomains of neurons in rodents. In order to investigate its possible role in learning and behaviour, we compared controls and knockout mice from three independent founder lines established from separate embryonic stem cells. Mutant mice were healthy with normal brain morphology and appeared to have no neurological deficits. A series of tests for exploration and spatial memory was carried out in three different laboratories. The tests were chosen as to ensure that different aspects of spatial memory and exploration could be separated and that possible effects of confounding variables could be minimised. Exploration was studied in a barrier test, in an open-field test, and in an elevated plus-maze test. Spatial memory was investigated in a Barnes maze and in a Morris water maze (memory for a single location), in a multiple T-maze and in a complex alley maze (route learning), and in a radial maze (working memory). In addition to these laboratory tasks, exploratory behaviour and spatial memory were assessed under semi-naturalistic conditions in a large outdoor pen. The combined results indicate that BC1 RNA-deficient animals show behavioural changes best interpreted in terms of reduced exploration and increased anxiety. In contrast, spatial memory was not affected. In the outdoor pen, the survival rates of BC1-depleted mice were lower than in controls. Thus, we conclude that the neuron-specific non-messenger BC1 RNA contributes to the aptive modulation of behaviour.


Nucleic Acids Research | 2010

A global view of the nonprotein-coding transcriptome in Plasmodium falciparum

Carsten A. Raabe; Cecilia P. Sanchez; Gerrit Randau; Thomas Robeck; Boris V. Skryabin; Suresh V. Chinni; Michael Kube; Richard Reinhardt; Guey Hooi Ng; Ravichandran Manickam; Vladimir Y. Kuryshev; Michael Lanzer; Juergen Brosius; Thean-Hock Tang; Timofey S. Rozhdestvensky

Nonprotein-coding RNAs (npcRNAs) represent an important class of regulatory molecules that act in many cellular pathways. Here, we describe the experimental identification and validation of the small npcRNA transcriptome of the human malaria parasite Plasmodium falciparum. We identified 630 novel npcRNA candidates. Based on sequence and structural motifs, 43 of them belong to the C/D and H/ACA-box subclasses of small nucleolar RNAs (snoRNAs) and small Cajal body-specific RNAs (scaRNAs). We further observed the exonization of a functional H/ACA snoRNA gene, which might contribute to the regulation of ribosomal protein L7a gene expression. Some of the small npcRNA candidates are from telomeric and subtelomeric repetitive regions, suggesting their potential involvement in maintaining telomeric integrity and subtelomeric gene silencing. We also detected 328 cis-encoded antisense npcRNAs (asRNAs) complementary to P. falciparum protein-coding genes of a wide range of biochemical pathways, including determinants of virulence and pathology. All cis-encoded asRNA genes tested exhibit lifecycle-specific expression profiles. For all but one of the respective sense–antisense pairs, we deduced concordant patterns of expression. Our findings have important implications for a better understanding of gene regulatory mechanisms in P. falciparum, revealing an extended and sophisticated npcRNA network that may control the expression of housekeeping genes and virulence factors.


Molecular and Cellular Biology | 2003

Neuronal Untranslated BC1 RNA: Targeted Gene Elimination in Mice

Boris V. Skryabin; Valentina Sukonina; Ursula Jordan; Lars Lewejohann; Norbert Sachser; Ilham A. Muslimov; Henri Tiedge; Jürgen Brosius

ABSTRACT Despite the potentially important roles of untranslated RNAs in cellular form or function, genes encoding such RNAs have until now received surprisingly little attention. One such gene encodes BC1 RNA, a small non-mRNA that is delivered to dendritic microdomains in neurons. We have now eliminated the BC1 RNA gene in mice. Three independent founder lines were established from separate embryonic stem cells. The mutant mice appeared to be healthy and showed no anatomical or neurological abnormalities. The gross brain morphology was unaltered in such mice, as were the subcellular distributions of two prototypical dendritic mRNAs (encoding MAP2 and CaMKIIα). Due to the relatively recent evolutionary origin of the gene, we expected molecular and behavioral consequences to be subtle. Behavioral analyses, to be reported separately, indicate that the lack of BC1 RNA appears to reduce exploratory activity.


Journal of Molecular Evolution | 1998

The BC200 RNA gene and its neural expression are conserved in Anthropoidea (Primates).

Boris V. Skryabin; Joachim Kremerskothen; Dido Vassilacopoulou; Todd R. Disotell; Vladimir V. Kapitonov; Jerzy Jurka; Jürgen Brosius

Abstract. The gene encoding BC200 RNA arose from a monomeric Alu element. Subsequently, the RNA had been recruited or exapted into a function of the nervous system. Here we confirm the presence of the BC200 gene in several primate species among the Anthropoidea. The period following the divergence of New World monkeys and Old World monkeys from their common ancestor is characterized by a significantly higher substitution rate in the examined 5′ flanking region than in the BC200 RNA coding region itself. Furthermore, the conservation of CpG dimers in the RNA coding region (200 bp) is drastically increased compared to the 5′ flanking region (∼400 bp) over all 12 species examined. Finally, the brain-specific expression pattern of BC200 RNA and its presence as a ribonucleoprotein particle (RNP) are conserved in Old World and New World monkeys. Our studies indicate that the gene encoding BC200 RNA was created at least 35–55 million years ago and its presence, mode of expression, and association with protein(s) as an RNP are under selective pressure.

Collaboration


Dive into the Boris V. Skryabin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michaela Kuhn

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hideo Baba

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Petra Pennekamp

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge