Michal Kovac
University of Basel
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michal Kovac.
Nature Genetics | 2013
Claire Palles; Jean-Baptiste Cazier; Kimberley Howarth; Enric Domingo; Angela Jones; Peter Broderick; Zoe Kemp; Sarah L. Spain; Estrella Guarino; Israel Salguero; Amy Sherborne; Daniel Chubb; Luis Carvajal-Carmona; Yusanne Ma; Kulvinder Kaur; Sara E. Dobbins; Ella Barclay; Maggie Gorman; Lynn Martin; Michal Kovac; Sean Humphray; Anneke Lucassen; Christopher Holmes; David R. Bentley; Peter Donnelly; Jenny C. Taylor; Christos Petridis; Rebecca Roylance; Elinor Sawyer; David Kerr
Many individuals with multiple or large colorectal adenomas or early-onset colorectal cancer (CRC) have no detectable germline mutations in the known cancer predisposition genes. Using whole-genome sequencing, supplemented by linkage and association analysis, we identified specific heterozygous POLE or POLD1 germline variants in several multiple-adenoma and/or CRC cases but in no controls. The variants associated with susceptibility, POLE p.Leu424Val and POLD1 p.Ser478Asn, have high penetrance, and POLD1 mutation was also associated with endometrial cancer predisposition. The mutations map to equivalent sites in the proofreading (exonuclease) domain of DNA polymerases ɛ and δ and are predicted to cause a defect in the correction of mispaired bases inserted during DNA replication. In agreement with this prediction, the tumors from mutation carriers were microsatellite stable but tended to acquire base substitution mutations, as confirmed by yeast functional assays. Further analysis of published data showed that the recently described group of hypermutant, microsatellite-stable CRCs is likely to be caused by somatic POLE mutations affecting the exonuclease domain.
International Journal of Cancer | 2010
Inti Zlobec; Michal Kovac; Priska Erzberger; Francesca Molinari; Michel P. Bihl; Alexander Rufle; Anja Foerster; Milo Frattini; Luigi Terracciano; Karl Heinimann; Alessandro Lugli
Confounding effects of specific KRAS gene alterations on colorectal cancer (CRC) prognosis stratified by microsatellite instability (MSI) and BRAFV600E have not yet been investigated. The aim of our study was to evaluate the combined effects of MSI, BRAFV600E and specific KRAS mutation (Gly → Asp; G12D, Gly → Asp, G13D; Gly → Val; G12V) on prognosis in 404 sporadic and 94 hereditary CRC patients. MSI status was determined according to the Bethesda guidelines. Mutational status of KRAS and BRAFV600E was assessed by direct DNA sequencing. In sporadic CRC, KRAS G12D mutations had a negative prognostic effect compared to G13D and wild‐type cancers (p = 0.038). With MSI, specific KRAS and BRAFV600E mutations, 3 distinct prognostic subgroups were observed in univariate (p = 0.006) and multivariable (p = 0.051) analysis: patients with (i) KRAS mutation G12D, G12V or BRAFV600E mutation, (ii) KRAS/BRAFV600E wild‐type or KRAS G13D mutations in MSS/MSI‐L and (iii) MSI‐H and KRAS G13D mutations. Moreover, none of the sporadic MSI‐H or hereditary patients with KRAS G13 mutations had a fatal outcome. Specific KRAS mutation is an informative prognostic factor in both sporadic and hereditary CRC and applied in an algorithm with BRAFV600E and MSI may identify sporadic CRC patients with poor clinical outcome.
British Journal of Cancer | 2013
Ulahannan D; Michal Kovac; Paul Mulholland; Jean-Baptiste Cazier; Ian Tomlinson
Next-generation sequencing (NGS) of cancer genomes promises to revolutionise oncology, with the ability to design and use targeted drugs, to predict outcome and response, and to classify tumours. It is continually becoming cheaper, faster and more reliable, with the capability to identify rare yet clinically important somatic mutations. Technical challenges include sequencing samples of low quality and/or quantity, reliable identification of structural and copy number variation, and assessment of intratumour heterogeneity. Once these problems are overcome, the use of the data to guide clinical decision making is not straightforward, and there is a risk of premature use of molecular changes to guide patient management in the absence of supporting evidence. Paradoxically, NGS may simply move the bottleneck of personalised medicine from data acquisition to the identification of reliable biomarkers. Standardised cancer NGS data collection on an international scale would be a significant step towards optimising patient care.
Nature Communications | 2015
Michal Kovac; Claudia Blattmann; Sebastian Ribi; Jan Smida; Nikola S. Mueller; Florian Engert; Francesc Castro-Giner; Joachim Weischenfeldt; Monika Kováčová; Andreas H. Krieg; Dimosthenis Andreou; Per-Ulf Tunn; Hans Roland Dürr; Hans Rechl; Klaus-Dieter Schaser; I. Melcher; Stefan Burdach; Andreas E. Kulozik; Katja Specht; Karl Heinimann; Simone Fulda; Stefan S. Bielack; Gernot Jundt; Ian Tomlinson; Jan O. Korbel; Michaela Nathrath; Daniel Baumhoer
Osteosarcomas are aggressive bone tumours with a high degree of genetic heterogeneity, which has historically complicated driver gene discovery. Here we sequence exomes of 31 tumours and decipher their evolutionary landscape by inferring clonality of the individual mutation events. Exome findings are interpreted in the context of mutation and SNP array data from a replication set of 92 tumours. We identify 14 genes as the main drivers, of which some were formerly unknown in the context of osteosarcoma. None of the drivers is clearly responsible for the majority of tumours and even TP53 mutations are frequently mapped into subclones. However, >80% of osteosarcomas exhibit a specific combination of single-base substitutions, LOH, or large-scale genome instability signatures characteristic of BRCA1/2-deficient tumours. Our findings imply that multiple oncogenic pathways drive chromosomal instability during osteosarcoma evolution and result in the acquisition of BRCA-like traits, which could be therapeutically exploited.
Gastroenterology | 2015
Claire Palles; Laura Chegwidden; Xinzhong Li; John M. Findlay; Garry Farnham; Francesc Castro Giner; Maikel P. Peppelenbosch; Michal Kovac; Claire L. Adams; Hans Prenen; Sarah Briggs; Rebecca Harrison; Scott Sanders; David MacDonald; Chris Haigh; A. T. Tucker; Sharon Love; Manoj Nanji; John deCaestecker; David Ferry; Barrie Rathbone; Julie Hapeshi; Hugh Barr; Paul Moayyedi; Peter H. Watson; Barbara Zietek; Neera Maroo; Timothy J. Underwood; Lisa Boulter; Hugh McMurtry
Background & Aims Barretts esophagus (BE) increases the risk of esophageal adenocarcinoma (EAC). We found the risk to be BE has been associated with single nucleotide polymorphisms (SNPs) on chromosome 6p21 (within the HLA region) and on 16q23, where the closest protein-coding gene is FOXF1. Subsequently, the Barretts and Esophageal Adenocarcinoma Consortium (BEACON) identified risk loci for BE and esophageal adenocarcinoma near CRTC1 and BARX1, and within 100 kb of FOXP1. We aimed to identify further SNPs that increased BE risk and to validate previously reported associations. Methods We performed a genome-wide association study (GWAS) to identify variants associated with BE and further analyzed promising variants identified by BEACON by genotyping 10,158 patients with BE and 21,062 controls. Results We identified 2 SNPs not previously associated with BE: rs3072 (2p24.1; odds ratio [OR] = 1.14; 95% CI: 1.09–1.18; P = 1.8 × 10−11) and rs2701108 (12q24.21; OR = 0.90; 95% CI: 0.86–0.93; P = 7.5 × 10−9). The closest protein-coding genes were respectively GDF7 (rs3072), which encodes a ligand in the bone morphogenetic protein pathway, and TBX5 (rs2701108), which encodes a transcription factor that regulates esophageal and cardiac development. Our data also supported in BE cases 3 risk SNPs identified by BEACON (rs2687201, rs11789015, and rs10423674). Meta-analysis of all data identified another SNP associated with BE and esophageal adenocarcinoma: rs3784262, within ALDH1A2 (OR = 0.90; 95% CI: 0.87–0.93; P = 3.72 × 10−9). Conclusions We identified 2 loci associated with risk of BE and provided data to support a further locus. The genes we found to be associated with risk for BE encode transcription factors involved in thoracic, diaphragmatic, and esophageal development or proteins involved in the inflammatory response.
Nature Communications | 2015
Michal Kovac; Carolina Navas; Stuart Horswell; M. Salm; Chiara Bardella; Andrew Rowan; Mark Stares; Francesc Castro-Giner; Rosalie Fisher; E. C de Bruin; Monika Kováčová; Maggie Gorman; Seiko Makino; J Williams; Emma Jaeger; Angela Jones; Km Howarth; James Larkin; L. M. Pickering; Martin Gore; David L. Nicol; Steven Hazell; Gordon Stamp; Tim O'Brien; Ben Challacombe; Nik Matthews; Benjamin Phillimore; Sharmin Begum; Adam Rabinowitz; Ignacio Varela
Papillary renal cell carcinoma (pRCC) is an important subtype of kidney cancer with a problematic pathological classification and highly variable clinical behaviour. Here we sequence the genomes or exomes of 31 pRCCs, and in four tumours, multi-region sequencing is undertaken. We identify BAP1, SETD2, ARID2 and Nrf2 pathway genes (KEAP1, NHE2L2 and CUL3) as probable drivers, together with at least eight other possible drivers. However, only ~10% of tumours harbour detectable pathogenic changes in any one driver gene, and where present, the mutations are often predicted to be present within cancer sub-clones. We specifically detect parallel evolution of multiple SETD2 mutations within different sub-regions of the same tumour. By contrast, large copy number gains of chromosomes 7, 12, 16 and 17 are usually early, monoclonal changes in pRCC evolution. The predominance of large copy number variants as the major drivers for pRCC highlights an unusual mode of tumorigenesis that may challenge precision medicine approaches.
Genes, Chromosomes and Cancer | 2012
Nicole Buerki; Lucienne Gautier; Michal Kovac; Giancarlo Marra; Mauro Buser; Hansjakob Mueller; Karl Heinimann
Lynch syndrome, an autosomal dominant cancer predisposition caused by mutations in DNA mismatch repair (MMR) genes, mainly mainly mutL homolog 1, OMIM 120436 (MLH1) and mutS homolog 2, OMIM 609309 (MSH2), encompasses a tumor spectrum including primarily gastrointestinal, endometrial, and ovarian cancer. This study aimed at clarifying the heavily debated issue of breast cancer being part of Lynch syndrome. Detailed clinical data on cancer occurrence in Swiss female MLH1/MSH2 mutation carriers were gathered, all available breast cancer specimens assessed for molecular evidence for MMR deficiency (i.e., microsatellite instability (MSI), MMR protein expression, and somatic (epi)genetic MMR gene alterations) and compiled with the scarce molecular data available from the literature. Seventy unrelated Swiss Lynch syndrome families were investigated comprising 632 female family members at risk of which 92 were genetically verified mutation carriers (52 MLH1 and 40 MSH2). On contrast to endometrial and ovarian cancer, which occurred significantly more often and at younger age in MLH1/MSH2 mutation carriers (median 50.5 and 49.0 years; P < 0.00001), overall cumulative breast cancer incidence closely mirrored the one in the Swiss population (56.5 years). Six (85.7%) of seven breast cancer specimens available for molecular investigations displayed the hallmarks of MMR deficiency. Combined with data from the literature, MSI was present in 26 (70.3%) of 37 and altered MMR protein expression in 16 (72.7%) of 22 breast cancer specimens from MLH1/MSH2 mutation carriers. These findings, thus, provide strong molecular evidence for a pivotal role of MMR deficiency in breast cancer development in Lynch syndrome.
Nature Communications | 2016
John M. Findlay; Francesc Castro-Giner; Seiko Makino; Emily Rayner; Christiana Kartsonaki; William Cross; Michal Kovac; Danny Ulahannan; Claire Palles; Richard S. Gillies; Thomas P. MacGregor; David N. Church; Nicholas D. Maynard; Francesca M. Buffa; Jean-Baptiste Cazier; Trevor A. Graham; Lai-Mun Wang; Ricky A. Sharma; Mark R. Middleton; Ian Tomlinson
How chemotherapy affects carcinoma genomes is largely unknown. Here we report whole-exome and deep sequencing of 30 paired oesophageal adenocarcinomas sampled before and after neo-adjuvant chemotherapy. Most, but not all, good responders pass through genetic bottlenecks, a feature associated with higher mutation burden pre-treatment. Some poor responders pass through bottlenecks, but re-grow by the time of surgical resection, suggesting a missed therapeutic opportunity. Cancers often show major changes in driver mutation presence or frequency after treatment, owing to outgrowth persistence or loss of sub-clones, copy number changes, polyclonality and/or spatial genetic heterogeneity. Post-therapy mutation spectrum shifts are also common, particularly C>A and TT>CT changes in good responders or bottleneckers. Post-treatment samples may also acquire mutations in known cancer driver genes (for example, SF3B1, TAF1 and CCND2) that are absent from the paired pre-treatment sample. Neo-adjuvant chemotherapy can rapidly and profoundly affect the oesophageal adenocarcinoma genome. Monitoring molecular changes during treatment may be clinically useful.
Cancer Cell | 2017
Carlos López-García; Laurent Sansregret; Enric Domingo; Nicholas McGranahan; Sebastijan Hobor; Nicolai Juul Birkbak; Stuart Horswell; Eva Grönroos; Francesco Favero; Andrew Rowan; Nicholas Matthews; Sharmin Begum; Benjamin Phillimore; Rebecca Burrell; Dahmane Oukrif; Bradley Spencer-Dene; Michal Kovac; Gordon Stamp; Aengus Stewart; Håvard E. Danielsen; Marco Novelli; Ian Tomlinson; Charles Swanton
Summary Chromosomal instability (CIN) contributes to cancer evolution, intratumor heterogeneity, and drug resistance. CIN is driven by chromosome segregation errors and a tolerance phenotype that permits the propagation of aneuploid genomes. Through genomic analysis of colorectal cancers and cell lines, we find frequent loss of heterozygosity and mutations in BCL9L in aneuploid tumors. BCL9L deficiency promoted tolerance of chromosome missegregation events, propagation of aneuploidy, and genetic heterogeneity in xenograft models likely through modulation of Wnt signaling. We find that BCL9L dysfunction contributes to aneuploidy tolerance in both TP53-WT and mutant cells by reducing basal caspase-2 levels and preventing cleavage of MDM2 and BID. Efforts to exploit aneuploidy tolerance mechanisms and the BCL9L/caspase-2/BID axis may limit cancer diversity and evolution.
Journal of Medical Genetics | 2011
Judith Necker; Michal Kovac; Michèle Attenhofer; Bruno Reichlin; Karl Heinimann
Background Familial adenomatous polyposis (FAP) is an autosomal dominantly inherited colorectal cancer predisposition caused by germ line mutations in the APC (adenomatous polyposis coli) gene. Current recommendations for APC mutation analysis advise full gene sequencing to identify point mutations and small insertions/deletions as well as the multiplex ligation dependent probe amplification (MLPA) technique to detect gene dosage alterations. Use of the protein truncation test (PTT) as a pre-screening tool has thus been largely replaced with direct end-to-end sequencing, mainly because of its limited sensitivity and failure to identify APC missense alterations. Methods and results This report describes two unrelated patients with classical polyposis coli and unremarkable family history in whom neither full sequencing nor MLPA on leucocyte derived DNA could identify a pathogenic APC mutation. Applying the PTT, however, provided evidence of aberrant bands in both patients. Subsequent targeted mutation analysis of their tumour derived DNA allowed the identification of two novel, pathogenic APC alterations present in a mosaic state, at blood levels (1–15%) below the detection limits of conventional Sanger sequencing. Conclusion The findings demonstrate the value of the PTT in identifying mosaic mutations in apparently APC mutation negative FAP patients with de novo classical polyposis and the need to keep the PTT within the diagnostic repertoire for APC mutation analysis.