Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michał Nosek is active.

Publication


Featured researches published by Michał Nosek.


Planta | 2015

The fungal endophyte Epichloë typhina improves photosynthesis efficiency of its host orchard grass (Dactylis glomerata)

Piotr Rozpądek; Katarzyna Wężowicz; Michał Nosek; Rafał Ważny; Krzysztof Tokarz; Marlena Lembicz; Zbigniew Miszalski; Katarzyna Turnau

Main conclusionAccording to the results presented in this paper the fungal endophyteEpichloë typhinasignificantly improves the growth, PSII photochemistry and C assimilation efficiency of its hostDactylis glomerata.In this paper, we present a comprehensive study of the impact of the endophytic fungi Epichloë typhina on its plant hosts’ photosynthesis apparatus. Chlorophyll a fluorescence, gas exchange, immuno-blotting and spectrophotometric measurements were employed to assess photosynthetic performance, changes in pigment content and mechanisms associated with light harvesting, carbon assimilation and energy distribution in Dactylis glomerata colonized with Epichloë typhina. According to the results presented in this study, colonization of D. glomerata results in improved photosynthesis efficiency. Additionally, we propose a new mechanism allowing plants to cope with the withdrawal of a significant fraction of its energy resources by the endophytic fungi. The abundance of LHCI, LHCII proteins as well as chlorophyll b was significantly higher in E+ plants. Malate export out of the chloroplast was shown to be increased in colonized plants. To our knowledge, we are the first to report this phenomenon. Epichloë colonization improved PSII photochemistry and C assimilation efficiency. Elevated energy demands of E+ D. glomerata plants are met by increasing the rate of carbon assimilation and PSII photochemistry.


Journal of Plant Physiology | 2011

Effects of Botrytis cinerea and Pseudomonas syringae infection on the antioxidant profile of Mesembryanthemum crystallinum C3/CAM intermediate plant

Marta Libik-Konieczny; Ewa Surówka; Elżbieta Kuźniak; Michał Nosek; Zbigniew Miszalski

Mesembryathemum crystallinum plants performing C(3) or CAM (crassulacean acid metabolism) appear to be highly resistant to Botrytis cinerea as well as to Pseudomonas syringae. Fungal hyphae growth was restricted to 48h post-inoculation (hpi) in both metabolic types and morphology of hyphae differed between those growing in C(3) and CAM plants. Growth of bacteria was inhibited significantly 24 hpi in both C(3) and CAM plants. B. cinerea and P. syringae infection led to an increase in the concentration of H(2)O(2) in C(3) plants 3 hpi, while a decrease in H(2)O(2) content was observed in CAM performing plants. The concentration of H(2)O(2) returned to the control level 24 and 48 hpi. Changes in H(2)O(2) content corresponded with the activity of guaiacol peroxidase (POD), mostly 3 hpi. We noted that its activity decreased significantly in C(3) plants and increased in CAM plants in response to inoculation with both pathogens. On the contrary, changes in the activity of CAT did not correlate with H(2)O(2) level. It increased significantly after interaction of C(3) plants with B. cinerea or P. syringae, but in CAM performing plants, the activity of this enzyme was unchanged. Inoculation with B. cinerea or P. syringae led to an increase in the total SOD activity in C(3) plants while CAM plants did not exhibit changes in the total SOD activity after interaction with both pathogens. In conclusion, the pathogen-induced changes in H(2)O(2) content and in SOD, POD and CAT activities in M. crystallinum leaves, were related to the photosynthetic metabolism type of the stressed plants rather than to the lifestyle of the invading pathogen.


Plant Physiology and Biochemistry | 2015

Plastoquinone redox state modifies plant response to pathogen

Michał Nosek; Andrzej Kornaś; Elżbieta Kuźniak; Zbigniew Miszalski

The role of PQ (plastoquinione) redox state in establishment of response to pathogen infection (Botrytis cinerea) was tested along the regulation of main antioxidative enzymes (superoxide dismutase - SOD, catalase - CAT) and photochemistry of PSII (photosystem II) in Mesembryanthemum crystallinum plants performing C3 and CAM (Crassulacean acid metabolism) carbon metabolism. The redox state of PQ was modified by two inhibitors of photosynthetic electron transport resulting in a more oxidised (3-(3,4-dichlorophenyl)-1,1-dimethylurea; DCMU) or reduced (2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone; DBMIB) PQ redox state simulating darkness and high light conditions, respectively. Irrespective of the type of treatment (mock inoculation or pathogen inoculation) SOD activity depended on the PQ pool. Our results suggest that regarding changes in infection-induced CAT activity, plants developed response that is vital for hypersensitive-like (HR-like) response establishment only when PQ pool generated signal was similar to that in light presence (DBMIB pre-treatment). When PQ pool generated signal was similar to darkness, CAT activity response remained stress-independent, similarly to SOD. Fluorescence parameters of PSII, Qp (photochemical quenching coefficient) and NPQ (non-photochemical quenching) were affected only in the tissues treated with DCMU in stress-independent manner. We suggest that in case of abiotic and biotic stresses signals emerging from PQ pool indirectly orchestrate plant response and carbon metabolism affects this regulatory pathway.


Annals of Botany | 2016

Photosynthesis-related characteristics of the midrib and the interveinal lamina in leaves of the C3–CAM intermediate plant Mesembryanthemum crystallinum

Elżbieta Kuźniak; Andrzej Kornas; Andrzej Kaźmierczak; Piotr Rozpądek; Michał Nosek; Maciej Kocurek; Günther Zellnig; Maria Müller; Zbigniew Miszalski

BACKGROUND AND AIMS Leaf veins are usually encircled by specialized bundle sheath cells. In C4 plants, they play an important role in CO2 assimilation, and the photosynthetic activity is compartmentalized between the mesophyll and the bundle sheath. In C3 and CAM (Crassulacean acid metabolism) plants, the photosynthetic activity is generally attributed to the leaf mesophyll cells, and the vascular parenchymal cells are rarely considered for their role in photosynthesis. Recent studies demonstrate that enzymes required for C4 photosynthesis are also active in the veins of C3 plants, and their vascular system contains photosynthetically competent parenchyma cells. However, our understanding of photosynthesis in veins of C3 and CAM plants still remains insufficient. Here spatial analysis of photosynthesis-related properties were applied to the midrib and the interveinal lamina cells in leaves of Mesembryanthemum crystallinum, a C3-CAM intermediate plant. METHODS The midrib anatomy as well as chloroplast structure and chlorophyll fluorescence, diurnal gas exchange profiles, the immunoblot patterns of PEPC (phosphoenolpyruvate carboxylase) and RubisCO (ribulose-1,5-bisphosphate carboxylase/oxygenase), H2O2 localization and antioxidant enzyme activities were compared in the midrib and in the interveinal mesophyll cells in leaves of C3 and CAM plants. KEY RESULTS Leaf midribs were structurally competent to perform photosynthesis in C3 and CAM plants. The midrib chloroplasts resembled those in the bundle sheath cells of C4 plants and were characterized by limited photosynthetic activity. CONCLUSIONS The metabolic roles of midrib chloroplasts differ in C3 and CAM plants. It is suggested that in leaves of C3 plants the midrib chloroplasts could be involved in the supply of CO2 for carboxylation, and in CAM plants they could provide malate to different metabolic processes and mediate H2O2 signalling.


Journal of Plant Physiology | 2012

Differences in the activity and concentration of elements of the antioxidant system in different layers of Brassica pekinensis head.

Sylwia Goraj; Marta Libik-Konieczny; Ewa Surówka; Piotr Rozpądek; Andrzej Kalisz; Andrzej Libik; Michał Nosek; Piotr Waligórski; Zbigniew Miszalski

Differences in the activity of superoxide dismutase, catalase (CAT) and ascorbate peroxidase (APX) as well as in the concentration of ascorbate, tocopherol and hydrogen peroxide (H₂O₂) were found in leaves from different layers of the Chinese cabbage (Brassica pekinensis (Lour.) Rupr.) head. The youngest chlorophyll-deficient leaves from the most inner layers of the cabbage head were characterized by a high concentration of ascorbate, high activity of iron superoxide dismutase (FeSOD), cooper/zinc superoxide dismutase (Cu/ZnSOD) and a low content of H₂O₂. On the other hand, activity of CAT, manganese superoxide dismutase (MnSOD) and APX and tocopherol content were highest in chlorophyll-rich leaves from outer parts. The results of this work are interesting from the human nutrition standpoint, as the measured antioxidants have beneficial effects on human health. They can also be utilized to improve storage conditions due to an unequivocal function of antioxidant molecules in maintaining postharvest quality of vegetables.


Acta Physiologiae Plantarum | 2012

Pathogen-induced changes in malate content and NADP-dependent malic enzyme activity in C3 or CAM performing Mesembryanthemum crystallinum L. plants

Marta Libik-Konieczny; Ewa Surówka; Michał Nosek; Sylwia Goraj; Zbigniew Miszalski

Changes in malate concentration and activity of NADP-dependent malic enzyme were observed as the effect of Botrytis cinerea infection of C3 or CAM-performing Mesembryanthemum crystallinum plants. Biotic stress applied on C3 plants led to increase in malate concentration during the night and in consequence it led to increase in Δ-malate (day/night fluctuations) in infected leaves on the 2nd day post infection (dpi). It corresponded with induction of additional isoform of NADP-malic enzyme (NADP-ME3). On the contrary, CAM-performing M. crystallinum plants exhibited decrease in malate concentration and decay in its diurnal fluctuations as a reaction to B. cinerea infection. This correlated with significant decrease in activities of NADP-malic enzyme isoforms on the 2nd dpi as well as no fluctuations in their activities on the 9th dpi. Presented results point out to differences between C3 and CAM plants in the direction of changes in primary metabolism providing energy, reducing equivalents and carbon skeletons for defense responses to halt the pathogen growth.


Journal of Plant Physiology | 2015

Veinal-mesophyll interaction under biotic stress

Michał Nosek; Piotr Rozpądek; Andrzej Kornaś; Elżbieta Kuźniak; Annegret Schmitt; Zbigniew Miszalski

According to microscopic observations, germinating hyphae of Botrytis cinerea, though easily penetrating Mesembryanthemum crystallinum mesophyll tissue, are limited in growth in mid-ribs and only occasionally reach vascular bundles. In mid-ribs of C3 and CAM leaves, we found significantly lower rbcL (large RubisCO subunit) abundance. Moreover, in CAM leaves, minute transcript contents for pepc1 (phosphoenolpyruvate carboxylase) and nadpme1 (malic enzyme) genes found in the mid-ribs suggest that they perform β-carboxylation at a low rate. The gene of the main H2O2-scavenging enzyme, catL (catalase), showed lower expression in C3 mid-rib parts in comparison to mesophyll. This allows maintenance of higher H2O2 quantities in mid-rib parts. In C3 leaves, pathogen infection does not impact photosynthesis. However, in CAM plants, the expression profiles of rbcL and nadpme1 were similar under biotic stress, with transcript down-regulation in mid-ribs and up-regulation in mesophyll (however, in case of rbcL not significant). After B. cinerea infection in C3 plants, transcripts for both antioxidative proteins strongly increased in mid-ribs, but not in mesophyll. In infected CAM plants, a significant transcript increase in the mesophyll was parallel to its decrease in the mid-rib region (however, in the case of catL this was not significant). Pathogen infection modified the expression of carbon and ROS metabolism genes in mid-ribs and mesophyll, resulting in the establishment of successful leaf defense.


Journal of Plant Physiology | 2018

Withdrawal from functional Crassulacean acid metabolism (CAM) is accompanied by changes in both gene expression and activity of antioxidative enzymes

Michał Nosek; K. Gawronska; Piotr Rozpądek; Magdalena Szechyńska-Hebda; Andrzej Kornaś; Zbigniew Miszalski

In Mesembryanthemum crystallinum, crassulacean acid metabolism (CAM) is seemingly reversible, but unequivocal evidence for functional CAM withdrawal has yet to be shown. In this study, we confirmed the rapid downregulation of PEPC1 expression just 1 h after the removal of NaCl from the plant growth media. At the same time, the Δ malate values in desalted plants rapidly (1 d) re-established to values typical for C3 plants. This phenomenon allowed us to confirm functional CAM withdrawal in the desalted plants. Desalting altered the expression of the genes of the main antioxidative enzymes and/or the activity of their respective proteins; for catalase (CAT), both gene expression and protein activity were restored to levels observed in C3 plants in response to desalting, while for cooper-zinc superoxide dismutase (CuZnSOD) and ascorbate peroxidase (APX), only protein activity was restored. Therefore, we conclude that during the C3→CAM transition the CAM-specific antioxidative enzyme activity profile constitutes a transient and fully reversible response to abiotic stress.


European Food Research and Technology | 2015

Ozone fumigation increases the abundance of nutrients in Brassica vegetables: broccoli (Brassica oleracea var. italica) and Chinese cabbage (Brassica pekinensis)

Piotr Rozpądek; Michał Nosek; Irenusz Ślesak; Edward Kunicki; Michał Dziurka; Zbigniew Miszalski


Acta Physiologiae Plantarum | 2011

Distribution pattern of antioxidants in white cabbage heads (Brassica oleracea L. var. capitata f. alba)

Michał Nosek; Ewa Surówka; Stanisław Cebula; Andrzej Libik; Sylwia Goraj; Andrzej Kornas; Zbigniew Miszalski

Collaboration


Dive into the Michał Nosek's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ewa Surówka

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge