Piotr Rozpądek
Jagiellonian University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Piotr Rozpądek.
Chemosphere | 2014
Piotr Rozpądek; Katarzyna Wężowicz; Anna Stojakowska; J. Malarz; E. Surówka; Ł. Sobczyk; Teresa Anielska; Rafał Ważny; Zbigniew Miszalski; Katarzyna Turnau
Cichorium intybus (common chicory), a perennial plant, common in anthropogenic sites, has been the object of a multitude of studies in recent years due to its high content of antioxidants utilized in pharmacy and food industry. Here, the role of arbuscular mycorrhizal fungi (AMF) in the biosynthesis of plant secondary metabolites and the activity of enzymatic antioxidants under toxic metal stress was studied. Plants inoculated with Rhizophagus irregularis and non-inoculated were grown on non-polluted and toxic metal enriched substrata. The results presented here indicate that AMF improves chicory fitness. Fresh and dry weight was found to be severely affected by the fungi and heavy metals. The concentration of hydroxycinnamates was increased in the shoots of mycorrhizal plants cultivated on non-polluted substrata, but no differences were found in plants cultivated on metal enriched substrata. The activity of SOD and H2O2 removing enzymes CAT and POX was elevated in the shoots of mycorrhizal plants regardless of the cultivation environment. Photochemical efficiency of inoculated chicory was significantly improved. Our results indicate that R. irregularis inoculation had a beneficial role in sustaining the plants ability to cope with the deleterious effects of metal toxicity.
Planta | 2015
Piotr Rozpądek; Katarzyna Wężowicz; Michał Nosek; Rafał Ważny; Krzysztof Tokarz; Marlena Lembicz; Zbigniew Miszalski; Katarzyna Turnau
Main conclusionAccording to the results presented in this paper the fungal endophyteEpichloë typhinasignificantly improves the growth, PSII photochemistry and C assimilation efficiency of its hostDactylis glomerata.In this paper, we present a comprehensive study of the impact of the endophytic fungi Epichloë typhina on its plant hosts’ photosynthesis apparatus. Chlorophyll a fluorescence, gas exchange, immuno-blotting and spectrophotometric measurements were employed to assess photosynthetic performance, changes in pigment content and mechanisms associated with light harvesting, carbon assimilation and energy distribution in Dactylis glomerata colonized with Epichloë typhina. According to the results presented in this study, colonization of D. glomerata results in improved photosynthesis efficiency. Additionally, we propose a new mechanism allowing plants to cope with the withdrawal of a significant fraction of its energy resources by the endophytic fungi. The abundance of LHCI, LHCII proteins as well as chlorophyll b was significantly higher in E+ plants. Malate export out of the chloroplast was shown to be increased in colonized plants. To our knowledge, we are the first to report this phenomenon. Epichloë colonization improved PSII photochemistry and C assimilation efficiency. Elevated energy demands of E+ D. glomerata plants are met by increasing the rate of carbon assimilation and PSII photochemistry.
Journal of Plant Physiology | 2013
Piotr Rozpądek; Ireneusz Ślesak; Stanisław Cebula; Piotr Waligórski; Michał Dziurka; Andrzej Skoczowski; Zbigniew Miszalski
The growth response and antioxidant capacity of Brassica oleracea var. capitata f. alba plants treated with 70ppb of ozone was examined. Four week old cabbage seedlings were fumigated with O3 for 3 days before being transplanted into the growing field. The effect of O3 treatment was determined directly after fumigation and over the course of field cultivation. Plants subjected to O3 treatment had an increased diameter of rosettes and number of leaves after 3 and 7 weeks in agriculture, respectively. In addition, the vast majority of fumigated plants reached marketable quality faster than control plants, indicating a positive role of episodes of increased O3 concentrations during vegetation on growth and yielding. Our analysis revealed that by fumigating juvenile white cabbage plants with moderate doses of O3 the activity of catalases (CAT) and peroxidases was elevated. The activity of the examined enzymes was not affected directly after fumigation, but it increased after several weeks in the experimental field. Increased CAT activity was accompanied by changes in 2 out of the 3 CAT genes CAT1 and CAT2, where CAT2 seemed to be responsible for the induced CAT activity. The biosynthesis of low-molecular stress protectants - tocopherols and the glucosinolate (GLS) sinigrin was transiently affected by ozone. γ-Tocopherol (γ-toc) content significantly increased directly after fumigation, but after 3 weeks of vegetation in the field its concentration reached values similar to control. The biosynthesis of α-tocopherol (α-toc) and sinigrin seemed to be upregulated in fumigated plants. However, the response was delayed; no differences were registered directly after treatment, but 3 weeks after transplanting the concentration of sinigrin and α-toc was elevated.
Symbiosis | 2014
Katarzyna Wężowicz; Piotr Rozpądek; Katarzyna Turnau
The microbial diversity of Verbascum lychnitis community from industrial areas was investigated. The plants harbor a variety of endophytic fungi most of which belong to the Ascomycetes. The isolated fungal endophytes were identified according to ITS1-5.8S-ITS2 rDNA sequence similarity and were found to belong to 22 genera and 12 orders. The most frequently isolated genera were Diaporthe spp., Alternaria spp. and Pichia spp. An unidentified species from the Xylaria genus was isolated from V. lychnitis, which is a novel finding since most Xylaria species were reported to be solely wood-inhabiting fungi. The composition of fungal endophytes from the tailings site showed higher diversity, particularly in leaf tissues, than in non-tailings sites.
Mycorrhiza | 2017
Katarzyna Wężowicz; Piotr Rozpądek; Katarzyna Turnau
The impact of fungal endophytes and the modulating role of arbuscular mycorrhizal fungi (AMF) on the vitality of Verbascum lychnitis, grown in the laboratory in a substratum from a post-mining waste dump was investigated. We report that inoculation with a single endophyte negatively affected the survival rate and biomass production of most of the plant-endophyte consortia examined. The introduction of arbuscular mycorrhiza fungi into this setup (dual inoculation) had a beneficial effect on both biomass yield and survivability. V. lychnitis co-inoculated with AMF and Cochliobolus sativus, Diaporthe sp., and Phoma exigua var. exigua yielded the highest biomass, exceeding the growth rate of both non-inoculated and AMF plants. AMF significantly improved the photosynthesis rates of the plant-endophyte consortia, which were negatively affected by inoculation with single endophytes. The abundance of PsbC, a photosystem II core protein previously shown to be upregulated in plants colonized by Epichloe typhina, exhibited a significant increase when the negative effect of the fungal endophyte was attenuated by AMF.
Annals of Botany | 2016
Elżbieta Kuźniak; Andrzej Kornas; Andrzej Kaźmierczak; Piotr Rozpądek; Michał Nosek; Maciej Kocurek; Günther Zellnig; Maria Müller; Zbigniew Miszalski
BACKGROUND AND AIMS Leaf veins are usually encircled by specialized bundle sheath cells. In C4 plants, they play an important role in CO2 assimilation, and the photosynthetic activity is compartmentalized between the mesophyll and the bundle sheath. In C3 and CAM (Crassulacean acid metabolism) plants, the photosynthetic activity is generally attributed to the leaf mesophyll cells, and the vascular parenchymal cells are rarely considered for their role in photosynthesis. Recent studies demonstrate that enzymes required for C4 photosynthesis are also active in the veins of C3 plants, and their vascular system contains photosynthetically competent parenchyma cells. However, our understanding of photosynthesis in veins of C3 and CAM plants still remains insufficient. Here spatial analysis of photosynthesis-related properties were applied to the midrib and the interveinal lamina cells in leaves of Mesembryanthemum crystallinum, a C3-CAM intermediate plant. METHODS The midrib anatomy as well as chloroplast structure and chlorophyll fluorescence, diurnal gas exchange profiles, the immunoblot patterns of PEPC (phosphoenolpyruvate carboxylase) and RubisCO (ribulose-1,5-bisphosphate carboxylase/oxygenase), H2O2 localization and antioxidant enzyme activities were compared in the midrib and in the interveinal mesophyll cells in leaves of C3 and CAM plants. KEY RESULTS Leaf midribs were structurally competent to perform photosynthesis in C3 and CAM plants. The midrib chloroplasts resembled those in the bundle sheath cells of C4 plants and were characterized by limited photosynthetic activity. CONCLUSIONS The metabolic roles of midrib chloroplasts differ in C3 and CAM plants. It is suggested that in leaves of C3 plants the midrib chloroplasts could be involved in the supply of CO2 for carboxylation, and in CAM plants they could provide malate to different metabolic processes and mediate H2O2 signalling.
Plant Physiology and Biochemistry | 2016
Piotr Rozpądek; Maria Rąpała-Kozik; Katarzyna Wężowicz; Anna Grandin; Stefan Karlsson; Rafał Ważny; Teresa Anielska; Katarzyna Turnau
Improving the nutritional value of commonly cultivated crops is one of the most pending problems for modern agriculture. In natural environments plants associate with a multitude of fungal microorganisms that improve plant fitness. The best described group are arbuscular mycorrhizal fungi (AMF). These fungi have been previously shown to improve the quality and yield of several common crops. In this study we tested the potential utilization of Rhizophagus irregularis in accelerating growth and increasing the content of important dietary phytochemicals in onion (Allium cepa). Our results clearly indicate that biomass production, the abundance of vitamin B1 and its analogues and organic acid concentration can be improved by inoculating the plant with AM fungi. We have shown that improved growth is accompanied with up-regulated electron transport in PSII and antioxidant enzyme activity.
Environmental Science and Pollution Research | 2015
Katarzyna Wężowicz; Katarzyna Turnau; Teresa Anielska; I. Zhebrak; K. Gołuszka; J. Błaszkowski; Piotr Rozpądek
Phytoremediation offers an environmental friendly alternative to conventional cleanup techniques. In this study, mycorrhizal fungi isolated from the roots of Mentha longifolia grown in the basin of the Centuria River (S Poland) were used. Iris pseudacorus was grown in substratum from an industrial waste, enriched in Pb, Fe, Zn, and Cd in a terrestrial and water-logged habitat. Plant yield and photosynthetic performance was the highest in the aquatic environment; however, the presence of toxic metals (TM) negatively affected photosystem II (PSII) photochemistry as shown by the JIP test. Fungi colonization and Cd accumulation within plant tissues was decreased. In the terrestrial habitat, neither arbuscular mycorrhizal fungi (AMF) nor metal toxicity affected plant growth, although metal uptake, Cd in particular, as well as photosynthesis were affected. Inoculated plants accumulated significantly more Cd, and photosynthesis was downregulated. The results presented in this study clearly indicate that the I. pseudacorus-AMF symbiosis adapts itself to the presence of toxic metals in the environment, optimizing resource supply, energy fluxes, and possibly stress tolerance mechanisms. Plant/AMF consortia grown in terrestrial and water-logged habitats utilize different strategies to cope with metal toxicity. The use of AMF in improving the phytoremediation potential of I. pseudacorus needs, however, further research.
Journal of Plant Physiology | 2015
Michał Nosek; Piotr Rozpądek; Andrzej Kornaś; Elżbieta Kuźniak; Annegret Schmitt; Zbigniew Miszalski
According to microscopic observations, germinating hyphae of Botrytis cinerea, though easily penetrating Mesembryanthemum crystallinum mesophyll tissue, are limited in growth in mid-ribs and only occasionally reach vascular bundles. In mid-ribs of C3 and CAM leaves, we found significantly lower rbcL (large RubisCO subunit) abundance. Moreover, in CAM leaves, minute transcript contents for pepc1 (phosphoenolpyruvate carboxylase) and nadpme1 (malic enzyme) genes found in the mid-ribs suggest that they perform β-carboxylation at a low rate. The gene of the main H2O2-scavenging enzyme, catL (catalase), showed lower expression in C3 mid-rib parts in comparison to mesophyll. This allows maintenance of higher H2O2 quantities in mid-rib parts. In C3 leaves, pathogen infection does not impact photosynthesis. However, in CAM plants, the expression profiles of rbcL and nadpme1 were similar under biotic stress, with transcript down-regulation in mid-ribs and up-regulation in mesophyll (however, in case of rbcL not significant). After B. cinerea infection in C3 plants, transcripts for both antioxidative proteins strongly increased in mid-ribs, but not in mesophyll. In infected CAM plants, a significant transcript increase in the mesophyll was parallel to its decrease in the mid-rib region (however, in the case of catL this was not significant). Pathogen infection modified the expression of carbon and ROS metabolism genes in mid-ribs and mesophyll, resulting in the establishment of successful leaf defense.
Mycorrhiza | 2018
Rafał Ważny; Piotr Rozpądek; Roman J. Jędrzejczyk; Marta Śliwa; Anna Stojakowska; Teresa Anielska; Katarzyna Turnau
Phytoremediation of polluted sites can be improved by co-inoculation with mycorrhizal and endophytic fungi. In this study, the effects of single- and co-inoculation of Lactuca serriola with an arbuscular mycorrhizal (AM) fungus, Rhizoglomus intraradices, and endophytic fungi, Mucor sp. or Trichoderma asperellum, on plant growth, vitality, toxic metal accumulation, sesquiterpene lactone production and flavonoid concentration in the presence of toxic metals were evaluated. Inoculation with the AM fungus increased biomass yield of the plants grown on non-polluted and polluted substrate. Co-inoculation with the AM fungus and Mucor sp. resulted in increased biomass yield of plants cultivated on the polluted substrate, whereas co-inoculation with T. asperellum and the AM fungus increased plant biomass on the non-polluted substrate. In the presence of Mucor sp., mycorrhizal colonization and arbuscule richness were increased in the non-polluted substrate. Co-inoculation with the AM fungus and Mucor sp. increased Zn concentration in leaves and roots. The concentration of sesquiterpene lactones in plant leaves was decreased by AM fungus inoculation in both substrates. Despite enhanced host plant costs caused by maintaining symbiosis with numerous microorganisms, interaction of wild lettuce with both mycorrhizal and endophytic fungi was more beneficial than that with a single fungus. The study shows the potential of double inoculation in unfavourable environments, including agricultural areas and toxic metal-polluted areas.