Micheal Ward
University of Queensland
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Micheal Ward.
Current Diabetes Reports | 2011
Hongliang Zong; Micheal Ward; Alan W. Stitt
Diabetic retinopathy is a major diabetic complication with a highly complex etiology. Although there are many pathways involved, it has become established that chronic exposure of the retina to hyperglycemia gives rise to accumulation of advanced glycation end products (AGEs) that play an important role in retinopathy. In addition, the receptor for AGEs (RAGE) is ubiquitously expressed in various retinal cells and is upregulated in the retinas of diabetic patients, resulting in activation of pro-oxidant and proinflammatory signaling pathways. This AGE-RAGE axis appears to play a central role in the sustained inflammation, neurodegeneration, and retinal microvascular dysfunction occurring during diabetic retinopathy. The nature of AGE formation and RAGE signaling bring forward possibilities for therapeutic intervention. The multiple components of the AGE-RAGE axis, including signal transduction, formation of ligands, and the end-point effectors, may be promising targets for strategies to treat diabetic retinopathy.
Journal of Biological Chemistry | 2010
Hongliang Zong; Angelina Madden; Micheal Ward; Mark Mooney; Christopher T. Elliott; Alan W. Stitt
The receptor for advanced glycation end products (RAGE) is a pattern-recognition receptor that binds to diverse ligands and initiates a downstream proinflammatory signaling cascade. RAGE activation has been linked to diabetic complications, Alzheimer disease, infections, and cancers. RAGE is known to mediate cell signaling and downstream proinflammatory gene transcription activation, although the precise mechanism surrounding receptor-ligand interactions is still being elucidated. Recent fluorescence resonance energy transfer evidence indicates that RAGE may form oligomers on the cell surface and that this could be related to signal transduction. To investigate whether RAGE forms oligomers, protein-protein interaction assays were carried out. Here, we demonstrate the interaction between RAGE molecules via their N-terminal V domain, which is an important region involved in ligand recognition. By protein cross-linking using water-soluble and membrane-impermeable cross-linker bis(sulfosuccinimidyl) suberate and nondenaturing gels, we show that RAGE forms homodimers at the plasma membrane, a process potentiated by S100B and advanced glycation end products. Soluble RAGE, the RAGE inhibitor, is also capable of binding to RAGE, similar to V peptide, as shown by surface plasmon resonance. Incubation of cells with soluble RAGE or RAGE V domain peptide inhibits RAGE dimerization, subsequent phosphorylation of intracellular MAPK proteins, and activation of NF-κB pathways. Thus, the data indicate that dimerization of RAGE represents an important component of RAGE-mediated cell signaling.
Scientific Reports | 2016
Linda A. Gallo; Micheal Ward; A. K. Fotheringham; Aowen Zhuang; Danielle J. Borg; Nicole B. Flemming; Ben M. Harvie; Toni L. Kinneally; Shang-Ming Yeh; D. McCarthy; Hermann Koepsell; Volker Vallon; Carol A. Pollock; Usha Panchapakesan; Josephine M. Forbes
Blood glucose control is the primary strategy to prevent complications in diabetes. At the onset of kidney disease, therapies that inhibit components of the renin angiotensin system (RAS) are also indicated, but these approaches are not wholly effective. Here, we show that once daily administration of the novel glucose lowering agent, empagliflozin, an SGLT2 inhibitor which targets the kidney to block glucose reabsorption, has the potential to improve kidney disease in type 2 diabetes. In male db/db mice, a 10-week treatment with empagliflozin attenuated the diabetes-induced upregulation of profibrotic gene markers, fibronectin and transforming-growth-factor-beta. Other molecular (collagen IV and connective tissue growth factor) and histological (tubulointerstitial total collagen and glomerular collagen IV accumulation) benefits were seen upon dual therapy with metformin. Albuminuria, urinary markers of tubule damage (kidney injury molecule-1, KIM-1 and neutrophil gelatinase-associated lipocalin, NGAL), kidney growth, and glomerulosclerosis, however, were not improved with empagliflozin or metformin, and plasma and intra-renal renin activity was enhanced with empagliflozin. In this model, blood glucose lowering with empagliflozin attenuated some molecular and histological markers of fibrosis but, as per treatment with metformin, did not provide complete renoprotection. Further research to refine the treatment regimen in type 2 diabetes and nephropathy is warranted.
PLOS ONE | 2016
Jason K. Cullen; Norazian Abdul Murad; Abrey J. Yeo; Matthew McKenzie; Micheal Ward; Kok Leong Chong; Nicole L. Schieber; Robert G. Parton; Yi Chieh Lim; Ernst J. Wolvetang; Ghassan J. Maghzal; Roland Stocker; Martin F. Lavin
Autosomal recessive ataxias are a clinically diverse group of syndromes that in some cases are caused by mutations in genes with roles in the DNA damage response, transcriptional regulation or mitochondrial function. One of these ataxias, known as Autosomal Recessive Cerebellar Ataxia Type-2 (ARCA-2, also known as SCAR9/COQ10D4; OMIM: #612016), arises due to mutations in the ADCK3 gene. The product of this gene (ADCK3) is an atypical kinase that is thought to play a regulatory role in coenzyme Q10 (CoQ10) biosynthesis. Although much work has been performed on the S. cerevisiae orthologue of ADCK3, the cellular and biochemical role of its mammalian counterpart, and why mutations in this gene lead to human disease is poorly understood. Here, we demonstrate that ADCK3 localises to mitochondrial cristae and is targeted to this organelle via the presence of an N-terminal localisation signal. Consistent with a role in CoQ10 biosynthesis, ADCK3 deficiency decreased cellular CoQ10 content. In addition, endogenous ADCK3 was found to associate in vitro with recombinant Coq3, Coq5, Coq7 and Coq9, components of the CoQ10 biosynthetic machinery. Furthermore, cell lines derived from ARCA-2 patients display signs of oxidative stress, defects in mitochondrial homeostasis and increases in lysosomal content. Together, these data shed light on the possible molecular role of ADCK3 and provide insight into the cellular pathways affected in ARCA-2 patients.
Journal of Endocrinology | 2015
Johanna L. Barclay; Hadiya Agada; Christina Jang; Micheal Ward; Neil Wetzig; Ken K. Y. Ho
Clinical cases of glucocorticoid (GC) excess are characterized by increased fat mass and obesity through the accumulation of white adipocytes. The effects of GCs on growth and function of brown adipose tissue are unknown and may contribute to the negative energy balance observed clinically. This study aims to evaluate the effect of GCs on proliferation, differentiation, and metabolic function of brown adipocytes. Human brown adipocytes sourced from supraclavicular fat biopsies were grown in culture and differentiated to mature adipocytes. Human white adipocytes sourced from subcutaneous abdominal fat biopsies were cultured as controls. Effects of dexamethasone on growth, differentiation (UCP1, CIDEA, and PPARGC1A expression), and function (oxygen consumption rate (OCR)) of brown adipocytes were quantified. Dexamethasone (1 μM) significantly stimulated the proliferation of brown preadipocytes and reduced that of white preadipocytes. During differentiation, dexamethasone (at 0.1, 1, and 10 μM) stimulated the expression of UCP1, CIDEA, and PPARGC1A in a concentration-dependent manner and enhanced by fourfold to sixfold the OCR of brown adipocytes. Isoprenaline (100 nM) significantly increased (P<0.05) expression of UCP1 and OCR of brown adipocytes. These effects were significantly reduced (P<0.05) by dexamethasone. Thus, we show that dexamethasone stimulates the proliferation, differentiation, and function of human brown adipocytes but inhibits adrenergic stimulation of the functioning of brown adipocytes. We conclude that GCs exert complex effects on development and function of brown adipocytes. These findings provide strong evidence for an effect of GCs on the biology of human brown adipose tissue (BAT) and for the involvement of the BAT system in the metabolic manifestation of Cushings syndrome.
Current Opinion in Pharmacology | 2013
Micheal Ward; A. K. Fotheringham; Mark E. Cooper; Josephine M. Forbes
Cardiovascular disease (CVD) is a leading cause of mortality in the Western World. The development and onset of disease can be attributed to many risk factors including genetic susceptibility, diabetes, obesity and atherosclerosis. Numerous studies highlight the production of advanced glycation endproducts (AGEs) and interaction with their receptor (RAGE) as playing a key pathogenic role. The AGEs-RAGE axis is thought to contribute to a proinflammatory environment inducing cellular dysfunction which cascades towards pathology. Mitochondrial dysfunction concurrently plays a role in these proinflammatory responses presenting excess reactive oxygen species (ROS) production under pathological conditions. This ROS release can exacerbate the production of AGEs fuelling the fire somewhat. However, the AGEs-RAGE axis may influence mitochondrial function independently of inflammation. Therefore instigation of the AGEs-RAGE axis may facilitate spiralling towards pathology on many fronts including CVD development.
Scientific Reports | 2017
Micheal Ward; Nicole B. Flemming; Linda A. Gallo; A. K. Fotheringham; D. McCarthy; Aowen Zhuang; Peter H. Tang; Danielle J. Borg; Hannah Shaw; Benjamin Harvie; David Briskey; Manuel R. Plan; Michael P. Murphy; Mark P. Hodson; Josephine M. Forbes
Mitochondrial dysfunction is a pathological mediator of diabetic kidney disease (DKD). Our objective was to test the mitochondrially targeted agent, MitoQ, alone and in combination with first line therapy for DKD. Intervention therapies (i) vehicle (D); (ii) MitoQ (DMitoQ;0.6 mg/kg/day); (iii) Ramipril (DRam;3 mg/kg/day) or (iv) combination (DCoAd) were administered to male diabetic db/db mice for 12 weeks (n = 11–13/group). Non-diabetic (C) db/m mice were followed concurrently. No therapy altered glycaemic control or body weight. By the study end, both monotherapies improved renal function, decreasing glomerular hyperfiltration and albuminuria. All therapies prevented tubulointerstitial collagen deposition, but glomerular mesangial expansion was unaffected. Renal cortical concentrations of ATP, ADP, AMP, cAMP, creatinine phosphate and ATP:AMP ratio were increased by diabetes and mostly decreased with therapy. A higher creatine phosphate:ATP ratio in diabetic kidney cortices, suggested a decrease in ATP consumption. Diabetes elevated glucose 6-phosphate, fructose 6-phosphate and oxidised (NAD+ and NADP+) and reduced (NADH) nicotinamide dinucleotides, which therapy decreased generally. Diabetes increased mitochondrial oxygen consumption (OCR) at complex II-IV. MitoQ further increased OCR but decreased ATP, suggesting mitochondrial uncoupling as its mechanism of action. MitoQ showed renoprotection equivalent to ramipril but no synergistic benefits of combining these agents were shown.
PLOS ONE | 2017
Sachin S. Thakur; Micheal Ward; Amirali Popat; Nicole B. Flemming; Marie-Odile Parat; Nigel L. Barnett; Harendra S. Parekh
Herein we showcase the potential of ultrasound-responsive nanobubbles in enhancing macromolecular permeation through layers of the retina, ultimately leading to significant and direct intracellular delivery; this being effectively demonstrated across three relevant and distinct retinal cell lines. Stably engineered nanobubbles of a highly homogenous and echogenic nature were fully characterised using dynamic light scattering, B-scan ultrasound and transmission electron microscopy (TEM). The nanobubbles appeared as spherical liposome-like structures under TEM, accompanied by an opaque luminal core and darkened corona around their periphery, with both features indicative of efficient gas entrapment and adsorption, respectively. A nanobubble +/- ultrasound sweeping study was conducted next, which determined the maximum tolerated dose for each cell line. Detection of underlying cellular stress was verified using the biomarker heat shock protein 70, measured before and after treatment with optimised ultrasound. Next, with safety to nanobubbles and optimised ultrasound demonstrated, each human or mouse-derived cell population was incubated with biotinylated rabbit-IgG in the presence and absence of ultrasound +/- nanobubbles. Intracellular delivery of antibody in each cell type was then quantified using Cy3-streptavidin. Nanobubbles and optimised ultrasound were found to be negligibly toxic across all cell lines tested. Macromolecular internalisation was achieved to significant, yet varying degrees in all three cell lines. The results of this study pave the way towards better understanding mechanisms underlying cellular responsiveness to ultrasound-triggered drug delivery in future ex vivo and in vivo models of the posterior eye.
Oncogene | 2018
Nataly Stylianou; Melanie Lehman; Chenwei Wang; Atefeh Taherian Fard; Anja Rockstroh; Ladan Fazli; Lidija Jovanovic; Micheal Ward; Martin Sadowski; Abhishek S. Kashyap; Ralph Buttyan; Martin Gleave; Thomas F. Westbrook; Elizabeth D. Williams; Jennifer H. Gunter; Colleen C. Nelson; Brett G. Hollier
The propensity of cancer cells to transition between epithelial and mesenchymal phenotypic states via the epithelial–mesenchymal transition (EMT) program can regulate metastatic processes, cancer progression, and treatment resistance. Transcriptional investigations using reversible models of EMT, revealed the mesenchymal-to-epithelial reverting transition (MErT) to be enriched in clinical samples of metastatic castrate resistant prostate cancer (mCRPC). From this enrichment, a metastasis-derived gene signature was identified that predicted more rapid cancer relapse and reduced survival across multiple human carcinoma types. Additionally, the transcriptional profile of MErT is not a simple mirror image of EMT as tumour cells retain a transcriptional “memory” following a reversible EMT. This memory was also enriched in mCRPC samples. Cumulatively, our studies reveal the transcriptional profile of epithelial–mesenchymal plasticity and highlight the unique transcriptional properties of MErT. Furthermore, our findings provide evidence to support the association of epithelial plasticity with poor clinical outcomes in multiple human carcinoma types.
Nephrology | 2015
Linda A. Gallo; Micheal Ward; A. K. Fotheringham; Carol A. Pollock; Usha Panchapakesan; Josephine M. Forbes
021 CELL BASED THERAPY IN COMBINATION WITH SERELAXIN IS CRITICAL FOR PRESERVATION OF VASCULAR INTEGRITY VIA PROMOTION OF ANGIOGENESIS AND ANASTOMOSIS B HUUSKES1, A PINTO2, C SAMUEL3, S RICARDO1 1Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria; 2Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria; 3Department of Pharmacology, Monash University, Clayton, Victoria